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Preface

We are very pleased to present the proceedings of the 4th International Cognitive
Vision Workshop, held as part of the 6th International Conference on Computer
Vision Systems on Santorini, Greece during May 12–15, 2008. The aim of ICVW
2008 was to document the progress of the relatively young field of cognitive
computer vision, bringing together researchers working and interested in this
field and giving them a platform to discuss the results of the different European
cognitive vision projects as well as international projects in this area. Original
research papers were solicited in all aspects of cognitive vision, targeting the
following areas in particular:

– Memory: The coupling between visual perception, tasks, knowledge and the
visual system requires memory. Issues that are of special importance for inte-
grating memory into vision systems include: how to manage representations
with limited resources; model for attention; integration of information across
representations and time.

– Learning and Adaptation: A system whose goal is that of interacting with
the real world must be capable of learning from experience and adapting
to unexpected changes. Also, there is a need for integration of multiple vi-
sual features to enable generation of stable hypotheses, and for methods for
combination of cues in the presence of uncertainty.

– Categorization: Research has in particular focused on recall of specific ob-
ject instances, events and actions. Whereas recently some progress has been
achieved in systems that allow limited recognition of object classes, events
and scenes across visual appearance, new methods are needed to enable
abstractions and effective categorization across variations in color, surface
markings, geometry, temporal scenes, context and tasks.

– Integration: Vision is often considered in isolation. When considered in the
context of an embodied system the concept of an “active visual observer”
becomes important. The visual system operates here as a task-oriented per-
ception module that generates a diverse set of visual descriptions about the
environment. The set of descriptors is by no means organized in a hierarchy.
Depending on the task at hand the system might generate features to the
“agent” in terms of events, labels, and/or spatio-temporal models (geome-
try, trajectories, relations, etc.). Thus, integration plays an important role,
from processing of visual cues and multi-modal sensor fusion to systems
architecture.

The 17 submission received by the Program Committee (PC) were first re-
viewed by three PC members each, and then advocated by a workshop organizer.
Overall, 11 papers were selected for oral presentation. Authors were given two
months after the workshop to revise their papers, according to the reviews and
the comments received during the workshop. The 11 papers gathered in this
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volume cover important aspects of cognitive vision like face recognition, activity
interpretation, attention, memory maps and scene interpretation.

It is our pleasure to thank all the members of the PC and the people involved
in the workshop organization, in particular Dimitris Christos, who designed and
updated the workshop website. Last but not least, we thank all authors who
contributed to this volume for sharing their new ideas and results with the
community of researchers in this rapidly developing field. We hope that you
enjoy reading this volume and find inspiration for your future work in the papers
contained here.

October 2008 Barbara Caputo
Markus Vincze
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Face Recognition with Biologically Motivated Boosted 
Features 

Erez Berkovich1, Hillel Pratt2, and Moshe Gur1 
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2 Evoked Potentials Laboratory, Technion – Israel Institute of Technology,  
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Abstract. The current work presents a new face recognition algorithm based on 
novel biologically-motivated image features and a new learning algorithm, the 
Pseudo Quadratic Discriminant Classifier (PQDC). The recognition approach 
consists of construction of a face similarity function, which is the result of 
combining linear projections of the image features. In order to combine this 
multitude of features the AdaBoost technique is applied. The multi-category 
face recognition problem is reformulated as a binary classification task to 
enable proper boosting. The proposed recognition technique, using the Pseudo 
Quadratic Discriminant Classifier, successfully boosted the image features. Its 
performance was better than the performance of the Grayscale Eigenface and 
L,a,b Eigenface algorithms.  

Keywords: Face Recognition, Biologically Motivated Image Features, Boost-
ing, Pseudo Quadratic Discriminant Classifier (PQDC). 

1   Introduction 

The computer vision community is trying to tackle the problem of face recognition for 
more than 30 years [1]. Recently, there is a renewed interest in this field due to 
emerging homeland security needs. Currently, there are many commercial face 
recognition systems, and the potential for more applications is vast: public security, 
video tracking and monitoring, law enforcement and biometric authentication. 

The academic work in this field led to significant improvements in performance in 
recent years [2]. However, many face recognition systems need to operate under 
controlled conditions of pose and illumination with cooperative subjects in order to 
achieve good recognition performance.   

Conventional face recognition methods usually use the 2D image matrix of the 
human face to derive a specific representation of the subject. This image representation 
is inherently susceptible to changes in subject’s pose and scene illumination. Good 
recognition methods need to be indifferent to such extrinsic changes, and should 
produce face representations with small within-class variation and large between-class 
variation. 
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The Eigenface model for face recognition [3] is considered the first successful 
example of facial recognition algorithm. It provides a representation of each face as a 
linear combination of eigenvectors. These eigenvectors are derived from the covariance 
matrix of the high-dimensional face vector space.  The biometric template of each face 
is composed of its projected coordinates in “face space”. The advantage of this model is 
the efficient computation of biometric templates which is ideal for identification 
purposes. Still, its main disadvantage is the significant decrease in recognition 
performance when faces are viewed with different levels of lighting or pose. 

Moghaddam and Pentland [4] used a probabilistic method to model the 
distributions of intra-personal variation (variation in different images of the same 
individual) and extra-personal variation (variations in image appearance due to 
difference in identity). Both high-dimensional distributions are estimated using 
eigenvectors. This probabilistic framework is particularly advantageous in that the 
intra/extra density estimates explicitly characterize the differences between identities. 

Other face recognition techniques apply transformation to the 2D face image in 
order to produce unique face representations. The Eigenphase method [5] uses Fourier 
transform and models the phase spectrum of face images. Principal Component 
Analysis (PCA) is performed in the frequency domain on the phase spectrum leading 
to improved recognition performance in the presence of illumination variations. 

Wavelets transforms have been extensively used for face recognition tasks, the most 
common of which is the Gabor wavelets. The sensitivity response of the Gabor 
oriented filters is similar to that of orientation selective neurons in the visual cortex and 
exhibits desirable characteristics of orientation selectivity and spatial locality [6]. 
Elastic Graph Matching (EGM) extracts concise face descriptions called Gabor Jets 
and represents a face as a labeled graph [7]. Each vertex of the graph corresponds to a 
fiducial point on the face (eyes, mouth, etc.), and is depicted by a multi-orientation and 
scale Gabor Jet computed from the image area around the vertex landmark. The edge 
of the graph represents the connection between two vertices landmarks. After the 
construction of the graph, recognition is based on a straightforward comparison of 
reference and probe image graphs. This enables EGM to model local facial features as 
well as global face configuration. The approach is susceptible to imprecise landmarks 
localization and cannot learn to maximize the extra-personal to intra-personal distance.  

Liu [8] introduced another Gabor based face classifier which produced excellent 
recognition results. The Gabor-Fisher Classifier (GFC) method derives an augmented 
Gabor feature vector from each of the image pixels multi-scale and orientation Gabor 
wavelet representation. This high dimensional representation is uniformly down-
sampled and then projected to a lower space using Principal Component Analysis. 
Finally, the Enhanced Fisher linear discriminant Model (EFM) is used for the 
discrimination of the resulting face templates. Although this method was very 
successful in face recognition tasks, its uniform down-sampling procedure is arbitrary 
and can keep redundant Gabor features while discarding informative ones which can 
unfavorably affect the recognition process. 

The AdaBoost Gabor Fisher Classifier (AGFC) [9] was proposed in order to tackle 
the above-mentioned problem of GFC. In AGFC, AdaBoost [10] is exploited to 
optimally select the most informative Gabor features. The selected low-dimensional 
AdaGabor features are then classified by Fisher discriminant analysis for final face 
identification. It was shown that the proposed method effectively reduced the 
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dimensionality of Gabor features and that the final recognition performance has also 
been improved. 

In both GFC and AGFC the holistic feature vector of the face image does not 
utilize the spatial information of human face. Additionally, these methods are based 
solely on the grayscale information of the face images without incorporating the color 
information which can enhance the recognition performance. The current work 
presents a new face recognition algorithm which tries to overcome the disadvantages 
of the previously mentioned methods, while introducing novel biologically motivated 
image features and a new learning algorithm, the Pseudo Quadratic Discriminant 
Classifier (PQDC). The recognition approach consists of constructing a face similarity 
function, which is the result of combining linear projections of biologically motivated 
image features. These projections are learned from a bi-categorial training database 
which is constructed from “same-person” and “different-person” image pairs.  

2   Methods 

2.1   Biologically Motivated Low-Level Features 

The primary visual cortex contains cells tuned to collection of features that create the 
perceived object representation. Similarly, in the current recognition model, images are 
decomposed to low-level features resembling those of the primary visual pathways.  

The features are produced by extending the Hunter L,a,b color space [11] to resemble 
the receptive fields found in the visual cortex. Hunter L,a,b color space is a perceptually 
linear color-opponent space with a dimension L for luminance and dimensions a and b 
representing red versus green and yellow versus blue color-opponency, respectively. 
This representation is based on nonlinearly-compressed CIE XYZ [12] color space 
coordinates. In this color space, which approximates human vision, a change of the 
same amount in a color value should produce a similar visual difference.  

For computation of Hunter L,a,b color space, image pixel values are linearly 
transformed from the CIE RGB space to XYZ space: 
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During the computation of the basic features the face image is decomposed to 
intensity, color, and orientation channels. The following extension of the Hunter L,a,b 
color space is introduced to produce biologically motivated features. Similarly to Itti 
et al. [13], spatial scales of the visual receptive fields are created using dyadic 
Gaussian pyramids, which progressively low-pass filter and sub-sample each of the 
resulting L, a, b channels. Although the proposed features are similar to those 
presented in [13], the introduction of the nonlinear Hunter L,a,b color space is novel 
to our knowledge and led to improved recognition results in comparison to other 
linear color spaces. 
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2.1.1   Intensity Channel 
Intensity features are computed by linear “center-surround” operators resembling 
visual receptive fields. Practically, the pyramidal representation of the input is 
convolved with a center-surround filter to produce the pyramidal intensity channel. 
Adapting Itti’s [13] notation we denote across-scale difference between two intensity 
maps as "Θ" which is obtained by interpolation to the finer scale and point by point 
subtraction. This extension of the luminance L channel leads to the following center-
surround pyramidal representation:  

1,,1,100 1 −=Θ= + mj
Y
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Y
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n

j
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j
j K  (2) 

Where Lj is the j-th level luminance value, Yj is the j-th level Y tristimulus value, m is 
the number of pyramidal levels and Yn is the Y tristimulus value of a specified white 
object. 

2.1.2   Opponent-Color Channels 
The Hunter opponent color axes a and b which roughly represent redness (positive) 
versus greenness (negative) and yellowness (positive) versus blueness (negative) are 
also extended. For the j-th level a and b channels we get: 
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Where Ka, Kb are coefficients which depend upon the illuminant, Xn is the X 
tristimulus value of the specified white object and Zn is the Z tristimulus value of the 
specified white object (for a D65 illuminant, Ka = 172.30, Kb = 67.20, Xn = 95.02,     
Yn = 100.00 and Zn = 108.82). 

2.1.3   Orientation Channels 
Local orientation information is obtained using oriented Gabor filters. Four 
orientations are being used: 0º, 45º, 90º, and 135º. The sensitivity response of the 
oriented filters is similar to that of orientation selective neurons in the visual cortex 
and is modeled by: 
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Where )(⋅ + )⋅= θθ sincos y( xX  and )(⋅+)⋅−= θθ cossin y(x Y , and 

the filter parameters are: orientation θ of the Gabor filter stripes, effective width of the  
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Fig. 1. The biologically motivated pyramidal image features. The columns from left to right 
display the output of the intensity channel L, a channel, b channel, and the four orientation 
channels. The rows display the different pyramidal levels of the representation, from fine 
resolution (top row) to a coarse one (bottom row).  

filter σ, wavelength of the cosine factor λ and the spatial aspect ratio which specifies 
the ellipticity of the support of the Gabor function is γ. 

Image decomposition to seven pyramidal channels with four spatial scales results 
in 28 biologically motivated image features. Each “feature” is basically an image 
matrix at a specific pyramidal level, processed by the appropriate receptive-field 
sensitivity response. Fig. 1 displays the resulting biologically motivated pyramidal 
image features for a general input image. 

2.2   AdaBoost (Adaptive Boosting) 

Boosting has been proposed to improve the accuracy of any given learning algorithm. It 
is based on the observation that it is much easier to find many rough rules of thumb than 
to find a single highly accurate decision rule. In the Boosting procedure a classifier with 
classification performance on the training set greater than an average performance is 
constructed, after which new component classifiers are added to form an ensemble 
whose joint decision rule has an arbitrarily high accuracy on the training set. 

AdaBoost (Adaptive Boosting) [10] is a specific Boosting approach. The training 
methodology of AdaBoost is the following: Each training example is assigned a 
weight that determines its probability of being selected for some individual weak 
classifier ht. With every iteration, the training data are used to construct weak 
classifiers on the training data. The best weak classifier is weighted by its accuracy 
and then added to the final strong classifier. At the successive iteration, the training 
data is re-weighted; examples that are misclassified gain weight and examples that are 
classified correctly lose weight. This process is iterated until a predefined error rate is 
reached or enough weak classifiers have been constructed. In this way, AdaBoost  
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Fig. 2. The AdaBoost Algorithm 

ignores easy training patterns and focuses on the difficult informative patterns. A 
pseudocode for AdaBoost is given in Fig. 2. 

2.2.1   Face Recognition as a Binary Classification Problem 
The excellent performance of AdaBoost in various recognition problems, led us to 
apply it to the resulting multitude of image features. Although face recognition is a 
multi-category problem, it can be formulated as a binary classification task. Adopting 
the methodology of Moghaddam and Pentland [4] we label the difference feature 
vector of two face images as “intra-personal” if they belong to the same face and as 
“extra-personal” otherwise. This transforms the face recognition problem to a binary 
classification problem; one only has to decide whether a difference feature vector 
between the probe image and a gallery image belongs to the “intra-personal” or 
“extra-personal” classes.   

The pre-processing phase produces a multitude of features describing the input 
image. In contrast to other recognition methods which are specifically based on pixel 
values, we would like to combine these features to produce better recognition results. 
AdaBoost is used to find the optimal combination of the biological features; given an 
image training set, the “intra-personal” / “extra-personal” difference classes are 
computed for each feature, and then AdaBoost is trained on them to select a weak 
classifier built upon the most informative feature. The process is iterated until a final 
strong classifier is constructed.   

Given two images i and j, and a specific image feature k the output of a weak 
classifier based on the feature difference is ht(xki - xkj). We seek an implementation for 
these weak classifiers which will produce a computationally efficient strong classifier. 
It would be advantageous to apply classifiers which use linear transformations,  
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Fig. 3. A simplified visualization of the intra-personal class (gray circles) and the extra-personal 
class (black circles) 

because the additivity condition will enable to compute feature difference in low-
dimensional space instead of in the original high-dimensional pixel space: ht(xki - xkj) 
= ht(xki) - ht(xkj). However, it is expected that the intra-personal class will be scattered 
around the coordinate origin, while the “noisier” extra-personal class will be scattered 
more distantly from the origin. A simplified visualization of this situation is 
demonstrated in Fig. 3. Common linear classifiers such as the Fisher Linear 
Discriminant (FLD) [14] will find it difficult to discriminate between both classes, 
and we therefore introduce the Pseudo Quadratic Discriminant Classifier (PQDC) 
which is adapted to this classification problem. 

2.3   Boosting with the Pseudo Quadratic Discriminant Classifier (PQDC) 

A novel discriminant method, Pseudo Quadratic Discriminant Classifier (PQDC), is 
proposed to discriminate between two different distributions. Suppose that we have a 
set of n d-dimensional samples x1,…,xn, n1 samples in the subset D1 labeled ω1 and n2 
samples in the subset D2 labeled ω2. Similarly to Fisher Linear Discriminant (FLD) 
[14] we reduce the dimensionality of the data by devising a transform from d 
dimensions to one dimension which well separates the samples. 

To overcome the fact that FLD can yield singular results for the “intra-personal” / 
“extra-personal” class distributions, PQDC introduces a non linear transform. This 
transform is composed of a linear projection vector, W, after which a non-linear 
quadratic operation, ()2, is performed: 

( ) WxxWxWxfy TTT === 2
)(

 
(5) 

This yields a corresponding set of n samples y1,…,yn divided into the subsets Y1 and 
Y2. Similarly to FLD, we seek a linear projection vector, W, which well separates the 
subsets and maximizes the following functional J(W): 
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Where im~  is the projected class mean and 2~
iS  is the projected class scatter.  

To find the optimal projection vector, W, which best separates the distributions, we 

need to expand im~  and iS
~

. The projected class mean is given by: 
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Where in  is the size of class iD  and iBS  is defined as: 
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The squared difference of the projected subsets means is a measure of the class 
separation. It follows that this between-class sum of squares is: 
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The within-class sum of squares gives the projected class scatter: 
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In order to simplify the expressions for the between-class scatter and the within-
class scatter, we introduce W which is an orthogonal projection matrix. Replacing the 

projection vector W with the matrix W will produce the expression WW B
T S  as a 

correlate of between-class scatter and the expression WW W
T S  as a correlate of the 

total within-class scatter. In the above we defined BS  as: 

( )( )T
BBBBB SSSSS 2121 −−≡  (11) 

And WS  is defined as: 

( )( )∑
∈

−−≡

+=

ij Dx

T

iB
T
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T

jjiW

WWW

SxxSxxS

SSS 21

 (12) 

The resulting criterion function J(·), symbolizing the between-class scatter to the 
within class scatter ratio can be written as: 

WW
WW

W
W

T

B
T

S

S
J =⇒ )(  (13) 
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This leads to a generalized eigenvalue problem. It is easy to show that the eigen-
vector Wi maximizing J(·) must satisfy: 

iWiB WSWS λ=  (14) 

The eigen-vector Wi can be found by solving: 

iiBW WWSS λ=⇒ −1  (15) 

We would like to reduce the d-dimensional classification problem to a one-
dimensional problem. The projection matrix W is composed of d eigenvectors. 
Therefore, we choose W1, the eigenvector with the largest eigenvalue as the projection 
vector for our Pseudo Quadratic Discriminant Classifier (in the sense described by 
equation 5). 

For a probe image feature xi and a gallery image feature xj the Pseudo Quadratic 
Discriminant Classifier can be easily evaluated (projection of gallery image features 
can be done offline to save computation time) and the resulting strong classifier is 
given by equation 16 in which wti is the projection of an i-th image feature by t-th 
weak PQDC classifier. bt is the decision threshold for the t-th classifier, i.e., the point 
along the one-dimensional subspace separating the projected points. It can be found 
by smoothing the projected data and finding the point where the posteriors are equal.  

The strong classifier output is used as a similarity Grade. Images belonging to the 
same person will produce higher grades, while images belonging to different persons 
will produce lower grades. 

( ){ }[ ] ( )[ ]∑∑
==

+−=+−=
T

t
ttjtit

T

t
ttjti

T
ttji bwwαbxxWαxxH

1

2

1

2
signsign),(  (16) 

3   Results 

We have tested the proposed face recognition algorithm on the Color FERET 
database [15, 16]. This database contains a large variety of faces and was prepared by 
the American national institute of standards to advance face recognition research.  

Images of 100 subjects from sets FA and FB were used for training. The FA and 
FB images of the same person vary only in expression (neutral versus smiling). When 
testing, FA images are used as gallery images and FB images are used as probes.  

All images were normalized for translation, scale and rotation according to 
manually labeled eye positions supplied with the FERET database. The images were  
 

      

Fig. 4. A sample of a normalized FERET images 
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scaled to a size of 128x128 pixels (Fig. 4) and their intensities were globally 
normalized to have zero mean and unit standard deviation.  

Five different recognition methods were compared:  

1) Gray-Eigenface – the dimensionality of the original intensity channel was 
reduced by PCA. 120 eigenvectors representing 98% of the data variance 
were used. The mahalanobis-cosine distance in PCA space, which was 
previously shown to be superior to other distance measures [17], was applied 
to reflect the similarity between face templates. 

2) L,a,b-Eigenface - the dimensionality of L,a,b  intensity and opponent-color 
channels was reduced by PCA. 120 eigenvectors representing 85% of the 
channels variance were used, and the mahalanobis-cosine distance was 
applied independently on each channel. The three resulting similarity 
measures were fused by arithmetical mean. 

3) Gray-BPQDC - the original intensity channel AdaBoosted using PQDC. 
Different image pairs of the 100 subjects were used as training data. 
AdaBoost was applied for a total of 120 rounds yielding a final strong 
classifier consisting of 120 weak classifiers. 

4) L,a,b-BPQDC - L,a,b intensity and opponent-color channels AdaBoosted 
using PQDC for a total of 120 rounds. 

5) L,a,b-BIO-BPQDC - proposed  recognition algorithm: the complete ensemble 
of biological image features shaped by the appropriate filters at various scales 
and orientations. The features were decomposed to non-overlapping blocks 
sized 16 by 16 pixels and then fed to the classifier. This enabled a global 
representation of faces at coarser pyramidal scales and a more localized 
representation at finer pyramidal scales. Features were AdaBoosted using 
PQDC for a total of 120 rounds. 

The recognition performance was evaluated using receiver operating characteristic 
(ROC) curves. A ROC curve illustrates over all possible decision thresholds the 
fraction of test image pairs correctly classified as different (extra-personal) versus the 
fraction of image pairs incorrectly classified as similar (intra-personal). The 
performance of the five recognition methods, estimated from the area under the ROC 
graph is given in Table 1. 

Table 1. Recognition performance of the five recognition methods 

Method Recognition Rate 
Gray-Eigenface 0.98276 

L,a,b-Eigenface 0.99068 

Gray-BPQDC 0.99326 

L,a,b-BPQDC 0.99873 

L,a,b-BIO-BPQDC 0.99954 

 
Worst recognition results (0.98276) were obtained for the Gray-Eigenface method, 

where the images were processed as grayscale; Gray-BPQDC which boosted these 
grayscale intensities yielded an improved result (0.99326); The performance of  
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Fig. 5. ROC graph of the recognition results on the FERET database. Gray-Eigenface) Grayscale 
Eigenface method using intensity channel; Gray-BPQDC) Intensity channel AdaBoosted using 
PQDC; L,a,b-Eigenface) L,a,b Eigenface method in which images are represented in the L,a,b 
color-space; L,a,b-BPQDC) L,a,b intensity and opponent-color channels AdaBoosted using 
PQDC; L,a,b-BIO-BPQDC) The ensemble of biological features boosted using PQDC. 

L,a,b-Eigenface method, which added the two opponent-color channels (a, b) to the 
intensity channel, was also superior (0.99068) to that of Gray-Eigenface; still, a better 
result was achieved for L,a,b-BPQDC which boosted the same features. The L,a,b-
BIO-BPQDC method was superior to all methods and resulted in the best recognition 
performance (0.99954). The ROC graph for these methods is presented in Fig. 5. 

4   Discussion and Conclusion 

In this work we introduced novel biologically motivated image features and used them 
for face recognition. In order to combine this multitude of features we applied the 
AdaBoost technique. The multi-category face recognition problem was reformulated as 
a binary classification task to enable proper boosting. 

The newly introduced biologically motivated image features consisted of an 
extension to the Hunter L,a,b color space, which is a nonlinearly-compressed CIE 
XYZ color space. This extension provided a pyramidal representation of the images, 
with characteristic features whose spatial responses resembled those of the primary 
visual cortex. In addition to their luminance, images where represented by two 
opponent-color channels. This greatly improved the recognition performance and 
leads to the conclusion that color have an important rule in face recognition. 

It was shown that using the Pseudo Quadratic Discriminant Classifier (PQDC) as a 
weak classifier successfully boosted the performance of the features used for the face 
recognition task. PQDC is a non-linear modification of Fisher Linear Discriminant  
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analysis, and it is particularly suitable for the face recognition problem when regarded 
as a binary classification task. Unlike other non-linear classification methods, for 
example Kernel-PCA [18], which does not allow for an efficient computation of the 
difference feature vectors, PQDC first applies a linear projection which efficiently 
lowers the dimension of the difference vector and facilitates the offline computation 
of the gallery image templates. In contrast to [9] where images are processed locally 
and the global spatial information of human face is not utilized, the current method 
applies PQDC to the ensemble of pixels of each biological feature and hence spatial 
information of the face is utilized. 

The performance of the proposed recognition technique, L,a,b-BIO-BPQDC, was 
compared to other recognition methods: 1) Gray-Eigenface, based on dimensionality 
reduction of the intensity channel, 2) L,a,b-Eigenface based on dimensionality 
reduction of the intensity and opponent-color channels, 3) Gray-BPQDC - the original 
intensity channel AdaBoosted using PQDC, 4) L,a,b-BPQDC - L,a,b intensity and 
opponent-color channels AdaBoosted using PQDC, and was superior to all of them.  

Our future work would focus on analyzing the properties of the most influential 
image features. Furthermore, we will seek an efficient implementation for the Pseudo 
Quadratic Discriminant Classifier and will examine larger face data sets.   
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Abstract. Faces are complex and important visual stimuli for humans and are 
subject to many psychophysical and computational studies. A new parametric 
method for generating synthetic faces is proposed in this study. Two separate 
programs, one in Delphi 2005 programming environment and another in 
MATLAB is developed to sample real faces and generating synthetic faces 
respectively. The user can choose to utilize default configurations or to 
customize specific configurations to generate a set of synthetic faces. Head-
shape and inner-hairline is sampled in a polar coordinate frame, located at the 
center of line connecting two eyes at 16 and 9 equ-angular positions. Three 
separate frames are placed at the left eyes center, nose tip and lips to sample 
them with 20, 30 and 44 angular points respectively. Eyebrows are sampled 
with 8 points in eye coordinate systems. Augmenting vectors representing these 
features and their distance from the origin generates a vector of size 95. For 
synthesized face, intermediate points are generated using spline curves and the 
whole image is then band pass filtered. Two experiments are designed to show 
that the set of generated synthetic faces match very well with their equivalent 
real faces. 

Keywords: Synthetic faces, Face recognition, Face perception, Face space, 
Spline curves, Pattern recognition, Pattern discrimination, Psychophysics.  

1   Introduction 

Faces are among the most important visual stimuli we perceive, informing us not only 
about a person’s identity, but also about their mood, sex, age and direction of gaze. 
Humans have a notable ability to discriminate, to recognize, and to memorize faces. 
Our ability to identify one another is vital to successful navigation in the community, 
and faces regardless of sharing the same basic features in the same basic 
configurations provide as a key source of person recognition. Attempts to elucidate 
this capability have motivated the development of numerous empirical and 
methodological techniques in the fields of psychology, neuroscience, and computer 
science. Neuroscientists and psychologists are concerned with the mechanisms 
underlying human face recognition. Computer scientists’ goal is to automate the 
process for applied reasons. Face recognition systems are progressively becoming 
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popular as means of extracting biometric information. Face images are the only 
biometric information available in some legacy databases like international terrorist 
watch-lists and can be acquired even without subject’s cooperation. 

Although automatic face-recognition systems need not be forced to mimic human 
brain’s processes, advances in brain’s technique for face recognition have proved to 
be useful.   

Several formal models of the representation, classification and recognition of 
artificial stimuli have been developed, which assume that the relevant stimuli are 
represented within a multidimensional space. The central assumptions of many of the 
models are closely related. This formal approach has been highly successful in 
accounting for human performance in laboratory experiments. In order to develop and 
test a formal model it is necessary to identify and control the relevant features or 
dimensions. The approach has, therefore, concerned the processing of sets of highly 
artificial and relatively simple stimuli [1]. Also Schematic faces have been used in the 
experiments. In [2], Brunswik and Reiter were the first to employ simplified face stimuli 
in a psychological study, and a recent neurophysiological study of inferotemporal 
neurons in macaques employed Brunswik faces to study categorization [3]. These faces 
are extreme face schematics (single horizontal line for mouth, single vertical line for 
nose within an ellipse, etc.) and are far too abstract to capture significant information 
about individual faces. Synthetic faces combine simplicity and low dimensional 
description with sufficient realism to permit individual identification [4].  

Other studies of face perception have used photographs, computer averages of 
several photographs, or reconstructions from laser scanned faces [5]. While this has 
provided researchers to investigate different aspects of the topic, reliance on these 
stimuli has resulted in a number of important limitations. 

Photographs are basically uncontrolled stimuli, which rarely match for color, size, 
orientation, texture, or lighting conditions. Additionally, they do not provide a 
systematic way of modifying face-specific image properties, which severely limits the 
extent to which similarities between stimuli can be measured, controlled, or 
manipulated. However the complexity of these stimuli has made it difficult to relate 
perception to the responses of underlying neural mechanisms. 

It has been proposed that faces are represented as undifferentiated whole shapes, 
with little or no explicit representation of face parts. However, humans can also 
recognize a face on the basis of isolated features presented independently of the facial 
context or within a different context (e.g. scrambled faces), albeit with some loss of 
accuracy [6]. It appears then that both feature based and holistic representations can 
be used in face discrimination and their dependence or independence has been a 
matter of debate [7], [8].  

To avoid some of these obstacles, we attempted to complete and optimize Wilson’s 
method [4]. Here we added the facial features instead of generic features used by 
Wilson and designed a new 95 dimensional face stimulus set. It is also possible to 
sample a specific feature with more detail by inhomogeneous sampling in different 
locations. This new stimulus set provides face space components such as mean face, 
identity levels, and caricatures. It is also possible to morph two different faces to each 
other. 
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2   Face Sampling 

We first describe how we prepared a set of digital photos. In next section, the way we 
generate synthetic faces from these real faces will be presented. A data set comprising 
photos of 110 people, half from each gender was created. Each person was 
photographed at a distance of 1 m in frontal view. Each Person’s eyes remained 
straight ahead within their head in the course of photographing. People were required 
to have a neutral expression and emotional state. We only considered male persons 
without facial hairs. Everybody wearing glasses was required to remove it before 
photographing. Color, luminance, and contrast of all images then were adjusted using 
Adobe PhotoShop Me 7.0. Extra parts of all images (e.g., neck, collar, etc.) were 
cropped. An example of such a face after pre-processing is illustrated in Figure 1. 

 
Fig. 1. A real and sampled face in outer head shape 

A program was developed in Delphi 2005 programming environment (Figure 3) for 
sampling faces. A polar coordinate system was manually positioned to be on the middle 
of a line connecting the pupils of eyes. As it is shown by radial lines in Figure 1, the 
outer shape of the head was sampled at 16 radial axes equally spaced at polar angles of 
22.5 (degree). Likewise, the inner hair was sampled by 9 further radii on and above 
horizontal line of the central polar coordinate system. A parameter (Degree) which 
controls the number of radial axes is available by changing the degree between them. 
For each facial feature, a separate polar coordinate system was positioned in the center 
of that feature. 

For the left eye, center of the pupil was considered as the center of its coordinate 
system. It was then sampled at twenty radial axes with 18 degrees apart. Because eyes 
contain more spatial information along 0 and 180 axes compared with other axes we 
devised a mechanism for sampling around those points with more resolution. For that 
angles was multiplied by a scale factor greater than 1, which controls the density of 
angles around 0 and 180 degrees. The inverse coding mechanism was used when 
generating synthetic faces. Figure 2 shows a scaled coordinate frame placed at the 
center of the left eye. 

The diameter of the iris and the thickness of the eyebrow were coded by the user 
subjectively in a range between 1 and 5. 

The left eyebrow was sampled in the same coordinate frame located at the left 
eye’s center. This feature was sampled in 15 degrees starting from 30 to 135.  

We assumed for simplicity that the right eye and eyebrow are the mirror image of 
their left counterparts, so, their information were calculated as the mirror and 
translated code of the left eye and eyebrow.  
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Fig. 2. Left eye coordinate frame 

 
Fig. 3. Delphi program for face sampling 

Another coordinate frame was positioned at the tip of the nose and was then sampled 
in 22.5 degrees starting from -45 to 67.5 degree. The right side of the nose was then 
generated by a mirror and translation operation on the information of the left side. To 
code the nose opening, its position was determined on 22.5, -45, or -67.5 degree.  

A coordinate frame was placed in the middle of the line separating top and bottom 
lips. It was then sampled at 15 degrees. Finally, combination of vectors generated in 
each feature coordinate frame resulted in a 95 dimensional vector for each face. 
Figure 3 shows a snapshot of face sampling program. 

3   Synthetic Face Generation 

Ninety-five dimensional vector of each face was feed to a separate MATLAB file 
(Face Synthesizer) to generate the final synthetic faces. Main strategy here was 
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interpolation of middle point using spline curves. Figure 4 illustrates an example of 
the interpolation of points of outer head shape. The same procedure was carried out 
for all facial features.  Code snippet for interpolating outer head shape is shown 
below: 

% head shape ------------------------------------------ 
res = 0.01;   % 2*pi/360; 
y1 = 0:0.3927:2*pi+0.3927; % outer head shape 
D1 = Data (5:20);  % outer head shape sampled points 
cs = spline (y1, D1); 
yy = 0: res: 2*pi+res; 
h=polar (yy, ppval (cs,yy),’k-‘) 

     cs = spline (y1, [D2(2:11)  D1(11:16)  D2(2)]); 

 

 
Fig. 4. Spline interpolation of outer head shape 

Synthetic faces derived up to now, still lack similarity with real faces. Particularly, 
face parts do not have relative contrast as it could be seen in real faces. Almost in 
every real face, hairs and lips are usually darker than the skin, the sclera and iris of the 
eye are respectively lighter and darker than the skin. So, each part was filled with 
appropriate color to have real face-like contrast.  

As face discrimination is optimal within a 2.0 octave (at half amplitude), a 
bandpass filtering was done with a bandwidth filter centered upon 8-13 cycles per 
face width [9], [10], [11], [12], [13]. Particularly, a radial asymmetric filter with a 
peak frequency of 10.0 cycles per face with a 2.0 octave bandwidth described by a 
difference of Gaussian (DOG): 

2 2

2 2
( ) 1.26exp( ) 0.26exp( )

(2.2 )

R R
DOG R

σ σ
= − − −  (1) 

where R is radius and σ was chosen so that the peak spatial frequency would be 10.0 
cycles per face width on average [4]. Output of the bandpass filtering on the mid-level 
synthesized face is shown in Figure 5. 
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Fig. 5. Mid-level and final bandpass filtered synthetic face 

Representation of faces in vector form allows algebraic operations such as 
morphing faces to each other, generating caricature faces, etc. Figure 6 shows a linear 
interpolation between two sample faces in 10 percent increments as follows: 

(1 ) ( )
100 100

x x
C A B= − +  (2) 

where C is the morphed face, A and B are two faces to be morphed to each other and 
x is the percent of morphing. 

 

Fig. 6. Morphing two faces to each other 

 



20 A. Borji 

Some other examples of generated synthetic faces are shown in figure below: 

 

Fig. 7. Three sample synthetic male (top-row) and female faces (bottom-row) 

4   Experiments 

To show that our generated synthetic faces carry the major geometric information to 
discriminate faces, we designed two experiments: 

4.1   Face Similarity Tasks 

The first experiment consists of two parts. In the first part, in all trials a forced choice 
procedure was used with no limitation on viewing time. Each experimental run, 
consisted of a total number of 800 trials, and was initiated by a button press. Target 
image was shown in the center of the screen, and 4 alternative options were shown 
simultaneously besides the target and the subject’s task was to match the target with 
its relevant option. 

Experiment one, part one evaluated the similarity of synthetic facial features with 
their original image. As shown in Figure 8, the target was always a photograph. In 
half of the trails, inner facial features, and in the other half, the outer facial features 
were used as answer options, randomly. The subject’s task was to match the most 
similar option with the target image.  

Results showed that subjects could match both inner and outer facial features 
precisely with their real images. Mean performance were 75% and 86% correct for  
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Fig. 8. Experiment one, part one test screen 

 

Fig. 9. Mean subject performance in first experiment 

inner and outer facial features, respectively. There was no significant different 
between 3 subjects performing these tasks (P>0.05). Results are shown in Figure 9. 

Results showed that subjects could match both inner and outer facial features 
precisely with their real counterpart image. 

In the second part, expectedly, performance was much better when the task was 
matching real faces to their complete synthetic images (with both inner features and 
outer head shape), as shown in previous studies [4]. 

4.2   Gender Discrimination Task 

We designed a gender discrimination task to see whether our faces carry information 
needed for gender categorization. In each trial, subjects were asked to determine the 
face gender by pressing a button indicating male or female gender. 

As shown in Figure 10, mean subjects performance in this task was 0.92 and 
differences between female and male targets was not significant. The subjects had no 
significant difference as well (P>0.05). 
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Fig. 10. Mean subject performance in gender discrimination task 

5   Conclusions 

A Toolbox for generating synthetic faces was introduced in this paper. It could be 
used for verifying both face recognition algorithms as well as conducting 
psychophysics tasks to understand face perception and recognition in humans and 
monkeys. Sampling is done with an executable program developed in Delphi 2005 
and a vector of size 95 is generated which codes much detail of a real face. It is then 
fed to a MATLAB file, which generates a synthetic face.  A set of real faces and their 
corresponding synthetics faces is also available and could be asked from authors. In 
our experiments, for the present, synthetic faces defined in a 95-dimensional face 
space catch very much of the information in real faces and are useful for research on 
face perception, memory, and recognition based upon salient geometric information 
in the most significant spatial frequency band.  
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Abstract. Stereoscopic vision is a capability that supports the ability of
robots to interact with visually complex environments. Epipolar geome-
try captures the projective relationship between the cameras in a stereo
vision system, assisting in the reconstruction of three-dimensional infor-
mation. However, a basic problem arises for robots with active vision
systems whose cameras move with respect to each other: the epipolar
geometry changes with this motion. Such problems are especially notice-
able in work with humanoid robots, whose cameras move in order to
emulate human gaze behavior. We develop an epipolar kinematic model
that solves this problem by building a kinematic model based on the
optical properties of a stereo vision system. We show how such a model
can be used in order to update the epipolar geometry for the head of a
humanoid robot.

1 Introduction

While stereo vision provides one of the richest feedback pathways for inferring
such structure from our physical environment, to utilize advanced stereo com-
puter vision techniques that are most relevant to biological perception [1] [2] re-
quires knowledge of the imaging system’s epipolar geometry. However the world
rarely stands still, and on platforms where the cameras can move independently
of one other the epipolar geometry will change with this motion. Here we develop
epipolar kinematic models, or kinematic models that track the motion of opti-
cal properties of the system. The result is that motor data is used to compute
an updated representation of the epipolar geometry. Particular emphasis in this
paper is placed on computing such models for humanoid robotic heads.

Camera calibration is the process of measuring the parameters necessary for
quantitative interaction with the 3D Euclidean world. The intrinsic parameters,
which include focal length, principal point, and a skew factor relating the x and y
axes, describe the camera itself. The extrinsic parameters, position and orienta-
tion, describe its pose in space. Additionally, lens distortion is often modeled. It
has been a heavily researched topic in the computer vision and photogrammetry
communities. [3] and [4] both provide excellent overviews of prior work and are
seminal papers on the topic.
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In a stereo vision system, epipolar geometry describes the projective rela-
tionship between two camera views, and can either be computed from their
calibration [5], or estimated for uncalibrated cameras via methods such as the
8-point algorithm [6]. In the case of calibrated cameras, the epipolar geometry
is described by the essential matrix. In the case of uncalibrated cameras, it is
referred to as the funamental matrix.

An active vision system is a vision system in which either the cameras are
able to move or they are attached to a device that is able to manipulate its
environment. Such systems include cameras mounted on robotic arms, often
referred to as hand cameras, and also in the heads of humanoid robots, such
as our upper-torso humanoid infant, Nico, which is discussed in more depth in
Section 5.1. The desire to calibrate the position of the cameras relative to the
underlying robotic platform has given rise to two tasks, hand-eye and head-eye
calibration, which either describe solving for how a camera is mounted with
respect to a movable platform, usually with known kinematics, or solving for
its position in space with respect to a manipulator, [7][8][9][10][11]. Kinematic
calibration is the process of estimating the kinematics of the underlying system,
[12][13].

Moving cameras present a unique challenge to robotics and vision researchers
who wish to exploit the epipolar geometry of multiple cameras to perform stereo
vision tasks. Such a scenario arises whenever a humanoid robot performs a sac-
cade, a tracking motion, or when the eyes verge upon an attended to object.
In this paper, we discuss the relationship between camera calibration, the esti-
mation of epipolar geometry, and the kinematics of active vision systems. Prior
work on this problem has focused on the use of 3D data to estimate ego-motion
visually [14], tracking points in a stereo pair [15], or developing kinematic models
by detaching the cameras from the head and viewing it using an external vision
system [12][13].

The central contribution of this paper is the notion of an epipolar kinematic
model, which is a kinematic model based on the motion of optical properties of
the projective relationship between the cameras in a stereo active vision system
as the cameras move through space. From this model we can compute current
epipolar geometry using only knowledge of the current angles of the motors. To
demonstrate, we will build such a model for our upper-torso humanoid. This
model will be suitable for use with many. We present results from a preliminary
implementation of the algorithm.

2 Background

2.1 The Pinhole Camera Model

Following standard notation, as found in [5], let X denote the homogeneous
representation of a point in 3-space, and x its image. When discussing a stereo
pair of cameras, determine one of the two cameras to be the first camera. All
properties of the second camera will be marked with a ′. For instance, let x
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represent the image of X in the first camera and x′ the image in the second
camera.

The camera projection matrix, Equation 1, represents the projection of a 3D
point, X , by a camera to a 2D point, x.

x = PX (1)

Modeling the camera under the standard pinhole camera model, the camera
calibration matrix, Equation 2 captures the camera’s intrinsic parameters, which
are properties of the camera itself. α and β, express focal length and are generally
equal, and γ, which is the skew factor between the x and y axes, is generally
0. u0 and v0 represent the principal point. Together, they define the camera
calibration matrix

A =

⎡
⎣α γ u0

0 β v0
0 0 1

⎤
⎦ (2)

The extrinsic parameters, R, the rotation of the camera, and C, the camera
center are combined with the camera calibration matrix as in Equation 3 to yield
the camera projection matrix. These parameters can be retrieved via a number
of standard camera calibration methods[4][3].

P = A[R | − RC] (3)

2.2 Epipolar Geometry

Under the pinhole camera model, image points are represented as rays of light
intersecting the image plane on a line running through the camera center. Given
a pair of cameras, P and P ′, and a point x in camera P , we can constrain the
position of x′, the image of the same three-dimensional point X in P ′ to a line,
l′. The image of one camera’s camera center in the other camera is called an
epipole. This system is called epipolar geometry, because these epipolar lines
must all run through the epipole.

This relationship can be captured by the fundamental matrix, F , Equation 4.

x′T Fx = 0 (4)

Given calibrated cameras, we can express our points as normalized image
coordinates, coordinates corresponding to the same camera, but with A equal
to the identity matrix. We express our coordinate system with in terms of P ,
giving us P = [I|0] and P ′ = [R|−RC]. In this case, our essential matrix can be
expressed as in Equation 5. The relationship between E and F is Equation 6. The
fundamental and essential matrices can be computed using standard techniques
[6][5][16][17].

E = [−RC]×R (5)

F = A′−T EA−1 (6)
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Fig. 1. Setup of the extrinsic parameters in the epipolar geometry problem. We define
our coordinate system with the first camera at the origin. The second camera is rotated
by RT .

3 Epipolar Kinematics

In the case of stereo vision systems in which the cameras remain stationary with
respect to each other, it is enough to estimate the epipolar geometry once, via
the familiar process of matching control points in each image to each other and
computing the projective relationship between them for 8 or more points [5]. For
vision systems such as Nico’s, however, this estimate will become inaccurate the
first time that the robot moves its eyes.

Approaches have been demonstrated that cope with this via purely visual
means, such as optical flow [15][14]. While a number of stereo tasks can still be
performed via algorithms that do not require knowledge of epipolar geometry,
such approaches ignore kinematic information available to the system that can
be used to maintain the estimate in “real time.” Most significantly, there is
evidence that primate visual processing is structured precisely to take advantage
of this [18].

From the formulation in Section 2.1, we can update the essential matrix with
respect to camera motion provided that we know the way that the cameras move
with respect to each other. Note that here we specifically mean the motion of the
camera center and orientation of our pinhole cameras, optical properties that can
be retrieved via standard computer vision techniques. One of the central insights
of this work is that we can estimate our kinematic models based on these optical
properties. This allows us to build our models using only image data processed by
our stereo vision system with its joints turned in several orientations, rather than
requiring for us to preprogram the system’s kinematics or externally calibrate
the kinematics of our visual system [12][13].

4 Epipolar Kinematics for a Humanoid

We define this model as a kinematic model over two revolute joints. This is re-
flective of those degrees of freedom relevant to the epipolar geometry of the head
of our our humanoid robot, Nico, as well as those of many other humanoid robots.
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Backlash is not modeled, and should be considered on top of this model if it is
a significant concern. Finally, assume that the camera faces directly away from
the axis of rotation of the joint on which it is mounted. We can easily eliminate
this assumption, but retain it because it reduces the number of measurements
that must be made, resulting in a faster calibration process, and also because
it accurately describes the vision systems on most humanoid robots. We feel
that the community of researchers working with humanoid robots is the most
likely group to incorporate this method into their work. In Section 7, we will
briefly discuss how to eliminate this assumption as well as how to model more
complicated kinematic systems.

Our epipolar kinematic calibration algorithm is agnostic to the methods used
for camera calibration and estimation of epipolar geometry. As such, we present
this as a framework into which preferred methods for these two processes can
be plugged in. By turning the linkage on which the camera is mounted and
observing the relationship of this view to the view before turning the camera we
can deduce the kinematics of the system. If that system has the constraint that
the camera faces directly away from the center of rotation, as it does on Nico,
then we are able to uncover the kinematics of that linkage by observing as few
as two views.

4.1 Calibration Algorithm

Initial measurement. Proceed by choosing two angles for each of the eye
motors to be calibrated. Denote the first camera in the first orientation, Cam1,1,
in the second orientation, Cam1,2, the second camera in the first orientation

Fig. 2. Camera orientations and variables used in this process
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Cam2,1, and so forth for all parameters of the system, as in Figure 2. Let E1,1;1,2
be the essential matrix between the Cam1,1 and Cam1,2, E2,1;1,2 between Cam1,1
and Cam2,1 and so forth. As is standard, in the below discussion we will treat
the first orientation in each essential matrix having its rotation matrix equal to
the identity matrix and its camera center at the origin.

Calibrate the cameras and solve for E1,1;1,2, E2,1;2,2, and E1,1;2,1.1 Use any
preferred method for both processes.2

Kinematic rotation axis and angle. Let R1,1;1,2 be the rotation matrix found
by decomposing E1,1;1,2. If V1,1;1,2 is the corresponding rotation vector, found
by Rodrigues’ Rotation Formula [19], then Θ1,1;1,2 is the magnitude of V1,1;1,2,
Equation 7.

Θ = ||V || (7)

Dividing by Θ yields a unit axis of rotation, S, Equation 8.

S =
V

Θ
=

V

||V || (8)

Kinematic link length. The camera centers for a camera before and after
motion, such as C1,1 and C1,2, and the center of rotation of the epipolar kinematic
linkage form an isosceles triangle. Therefore, the length of the linkage is given
by Equation 9.

L1 =

||C1,2||
2

sin(
Θ1,1;1,2

2
)

(9)

Finding the center of rotation. Per our assumption that the camera faces
directly away from the axis of rotation, compute the center of rotation via Equa-
tion 10, where D1 is the center of rotation for for the first camera. D2 is computed
analogously.

D1 = C1,1 − [0 0 L1] (10)

Algorithm. Our entire calibration algorithm is summarized in Algorithm 1.
This algorithm need be performed only once, at startup. The update rule to
estimate the updated essential matrix is presented in Section 4.2.

1 The purpose of the essential matrices is to ground the coordinate system with respect
to the first camera orientation in each. If the calibration method places all of the
extrinsic parameters in the same coordinate system, this step can be ignored, and
the epipolar kinematic calibration process modified accordingly.

2 The reader who is familiar with these processes will note that this might yield mul-
tiple values for A for the same physical camera, hopefully remarkably close to one
another. In our implementation, we calibrate the cameras once using OpenCV.
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Algorithm 1. Estimation of system parameters
1. Calibrate the two cameras in the stereo active vision system, Cam1 and Cam2

2. Choose 4 camera orientations, two for each camera, Cam1,1, Cam1,2, Cam2,1,
Cam2,2

3. Estimate the essential matrix in each orientation
4. Factor E1,1;1,2, E2,1;2,2, E1,1;2,1 per Equation 5
5. Compute V1,1;1,2 and V2,1;2,2 from R1,1;1,2, R2,1;2,2 via Rodrigues’ Rotation Formula
6. Compute Θ1,1;1,2 and Θ2,1;2,2, per Equation 7
7. Compute S1 and S2 per Equation 8
8. Compute L1 and L2 per Equation 9
9. Compute D1, D2 per Equation 10

4.2 Updating the Essential Matrix

At runtime, we update our essential matrix to reflect the new position and
orientation of the cameras each time they move with respect to each other. This
means updating every time the motors move, changing this relationship.

Let Θ1,Enc be the difference between the Θ indicated by the encoder at Cam1,1
and the current encoder reading for that camera’s associated motor. Let Θ2,Enc

be the analogous value for the second camera. All variables subscripted Enc will
be with respect to the current encoder reading. Compute updated V1,Enc, V2,Enc

by Equation 11.
V1,Enc = Θ1,Enc ∗ S1 (11)

Update R1,Enc and R2,Enc via Rodrigues’ Rotation Formula. We’ll denote
variables reflective of the current position and rotation of the second camera with
respect to the current position and rotation of the first camera by subscripting
them CurSys. Let RCurSys is given by Equation 12.

RCurSys = RT
1,Enc ∗ R2,Enc ∗ R1,1;2,1 (12)

Find the updated camera centers, C1,Enc and C2,Enc via Equation 13.

C1,Enc = RT
1,Enc[0 0 L1] − D1 (13)

Find the updated camera center in the second view with respect to the first
view, CCurSys, Equation 14. Remember that C1,Enc and C2,Enc do not share the
same world coordinate system.

CCurSys = C2,1 − C1,Enc + C2,Enc (14)

Compute the updated essential matrix, Equation 15.

ECurSys = A′−T
2 [−RCurSys ∗ CCurSys]×RCurSysA

−1
1 (15)

Our entire update algorithm is summarized in Algorithm 2. Since this algo-
rithm involves only constant-time matrix computations, it can be used to update
the epipolar geometry in real-time.
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Algorithm 2. Essential matrix update
1. Compute V1,Enc, V2,Enc per Equation 11. Compute updated R1,Enc, R2,Enc from

V1,Enc, V2,Enc via Rodrigues’ Rotation Formula
2. Compute RCurSys via Equation 12
3. Compute C1,Enc, C2,Enc via Equation 13
4. Compute CCurSys via Equation 14
5. Compute ECurSys via Equation 15

5 Tests

5.1 Platform

Nico, Figure 3, is an upper-torso humanoid robot that has been modeled after
the the kinematic structure of a fiftieth percentile 12-month-old male infant. It
has 23 mechanical degrees of freedom, including six in each arm and two in its
recently-added hand. Its head has six degrees of freedom and employs a foveated
vision system consisting of four NTSC color cameras mounted in two anthropo-
morphic eyes. The eyes have mechanically coupled pitch and independent yaw
degrees of freedom. Nico’s compute platform includes a 20-node cluster running
the QNX real-time operating system. Nodes are connected via 100 Mbit Ethernet
to each other and to a number of Linux and Windows machines whose configura-
tions change from experiment to experiment. This architecture allows us to easily

Fig. 3. Nico, an upper-torso humanoid infant
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integrate software packages on multiple platforms into Nico’s control system, as
well as to remotely operate Nico via the Internet.

5.2 Test Setup

In order to test our system we took 3 sets of images of chessboards. Imaging pro-
ceeded as follows. The cameras were first to −10 degrees, then to 0 degrees, 5
degrees, and 10 degrees. A chessboard was placed in front of the robot and it was
visually confirmed that the robot could locate all of the interior corners of the
chessboard in both cameras in the last 3 of these orientations. The first orienta-
tion was then returned to in order to assure that any backlash was worked out of
the system. It is expected that this, combined with the fact that the system uses
zero-backlash motors worked out most of the backlash. Several images were taken
in each position for each orientation of the chessboard in order to generate a set
of images for both camera calibration and the estimation of epipolar geometry.

Using these images, the cameras were calibrated using OpenCV [20], and the
essential matrices between the 0 and 10 degree views for each motor, and the 0
degree views for both motors were computed using a third-party tool, Gandalf.3

Tests were performed on the images shot at 5 degrees. For comparison, we
computed the essential matrix both using the epipolar kinematics algorithms
and directly from the images.

6 Results

The results included in this section should be regarded as preliminary, as the
accuracy in our essential matrix estimates does not match the sub-pixel reso-
lution expected from state of the art algorithms. Updated results will be made
available in a future publication.

Upon testing, we found that the software package we used to estimate the
essential matrix, Gandalf, exhibits a degree of numerical instability that is quite
common in software that is used to estimate epipolar geometry [21]. In order to
work around this instability, we built a software package that processed all possi-
ble subsets of image pairs for each essential matrix to Gandalf. As an error metric,
we adopted the mean distance in pixels between an epipolar line and its corre-
sponding point. We computed the epipolar lines in the right image corresponding
to chessboard corners in the left image and measured the distance to the corre-
sponding image point. We chose each essential matrix as the one corresponding
to the lowest mean distance for each matrix required to compute the epipolar
kinematic model, as well as for the essential matrix computed directly from the
test images. See Table 2 for the mean distance corresponding to each matrix.

The redundancy of the Θ yielded by both checking the encoder readings and
the computation of the essential matrix gives us the opportunity to check our
robot’s physical readings against those estimated by the vision algorithm. Results
of this comparison are listed in Table 1. As we can see, there is significant
3 http://gandalf-library.sourceforge.net/
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(a) Left camera image. (b) Right camera image, with epipolar
lines estimated directly from the images.

(c) Right camera image, with epipolar
lines estimated using the essential ma-
trix update algorithm.

Fig. 4. Number of intersections from epipolar line to corresponding point plotted
against line thickness in pixels. There are 49 test points.

disagreement between the vision algorithm and the motors. Potential sources of
this error include backlash in the motors and gears, and error in the estimates
of the essential matrix or camera calibration.
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Table 1. Θ’s estimated by essential matrix computation

Θa Θb Θc

Estimated from E 0.17412 0.0479997 0.0109251
Turned to - 10 10

Table 2. Mean distance from a given epipolar line to its corresponding point

Essential Matrix Mean distance from point to epipolar line
Input to the epipolar kinematic model

E1,1;1,2 1.11736
E2,1;2,2 0.638143
E1,1;2,1 2.38185

Results
Directly Computed From Images 18.7897

Epipolar Kinematic Model 11.0749

The epipolar lines yielded by these computations appear in Figures 4(a), 4(b),
and 4(c). As we can see, the positioning of the epipole in the two images is not
the same. As a test of the relative quality of the two algorithms, we took the
mean distance from the epipolar line computed from the chessboard corners
in the first image to the corresponding point in the second image using both
an essential matrix estimated directly from imaged points and one estimated
using an epipolar kinematic model. Results can be seen in Table 2. Another
rough estimate of the quality of the essential matrix is the number of epipolar
lines that intersect with their corresponding image points. We compare the two
matrices in Figure 4.

7 Conclusion

The primary insight offered in this paper is that we can build epipolar kinematic
systems, kinematic systems built directly off of the optical properties of a stereo
vision system, in order to track these properties as the system moves. This
allows us to keep a consistent view of the epipolar geometry of the system as it
undergoes motion.

To demonstrate this technique, we showed how to compute the epipolar kine-
matics of the degrees of freedom of the active vision head on our humanoid
robot, Nico, for those degrees of freedom effecting the system’s epipolar geome-
try. The algorithms in this paper are suitable for the active vision heads of many
humanoid robots. In this exploration we can clearly see that the estimation of
epipolar kinematics is built on top of the existing suite of techniques available
to the tasks of camera calibration and estimation of epipolar geometry.

Though a version of this algorithm that uses two orientations per camera
is presented in this paper, it is possible to update this algorithm to use three



Epipolar Geometry for Humanoid Robotic Heads 35

orientations per camera in order to lift the assumption that the cameras face
straight forward from center of rotation. In this case, we are able to estimate
the circle defining the rotation from the three camera centers, found during
the estimation of epipolar geometry, per camera, leaving us only to solve for
the rotation of the camera with respect to the endpoint of the linkage. Such
an algorithm is equivalent to solving head/hand-eye calibration and kinematic
calibration simultaneously. Building on this process, we can estimate the epipolar
kinematics of systems where more than one linkage can control the orientation
of the camera. The same mathematics can equivalently be used to solve for the
kinematics of a manipulator, or other kinematic linkage visible in the visual field,
and its relationship to the coordinate system of the visual system. This is all
deferred to future work in which the robot learns about its self in terms of its
kinematics and its sensors.
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Elderly Based on 3D Key Human Postures
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Abstract. This paper presents a cognitive vision approach to recognize
a set of interesting activities of daily living (ADLs) for elderly at home.
The proposed approach is composed of a video analysis component and
an activity recognition component.

A video analysis component contains person detection, person tracking
and human posture recognition. A human posture recognition is composed
of a set of postures models and a dedicated human posture recognition
algorithm.

Activity recognition component contains a set of video event models
and a dedicated video event recognition algorithm.

In this study, we collaborate with medical experts (gerontologists from
Nice hospital) to define and model a set of scenarios related to the in-
teresting activities of elderly. Some of these activities require to detect
a fine description of human body such as postures. For this purpose, we
propose ten 3D key human postures usefull to recognize a set of interest-
ing human activities regardless of the environment. Using these 3D key
human postures, we have modeled thirty four video events, simple ones
such as “a person is standing” and composite ones such as “a person is
feeling faint”. We have also adapted a video event recognition algorithm
to detect in real time some activities of interest by adding posture.

The novelty of our approach is the proposed 3D key postures and the
set of activity models of elderly person living alone in her/his own home.

To validate our proposed models, we have performed a set of exper-
iments in the Gerhome laboratory which is a realistic site reproducing
the environment of a typical apartment. For these experiments, we have
acquired and processed ten video sequences with one actor. The dura-
tion of each video sequence is about ten minutes and each video contains
about 4800 frames.

Keywords: 3D human posture, posture models, event models, ADLs.

1 Introduction

The elderly population is expected to grow dramatically over the next 20 years.
The number of people requiring care will grow accordingly, while the number
of people able to provide this care will decrease. Without receiving sufficient
care, elderly are at risk of loosing their independence. Thus a system permitting
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elderly to live safely at home is more than needed. Medical professionals believe
that one of the best ways to detect emerging physical and mental health prob-
lems, before it becomes critical - particularly for the elderly - is analyzing the
human behavior and looking for changes in the activities of daily living (ADLs).
Typical ADLs include sleeping, meal preparation, eating, housekeeping, bathing
or showering, dressing, using the toilet, doing laundry, and managing medica-
tions. As a solution to this issue, we propose an approach which consists in the
modeling of ten 3D key human postures useful to recognize some interesting ac-
tivities of elderly. The recognition of these postures is based on using the human
posture recognition algorithm proposed in [1] which can recognize in real time
human postures with only one static camera regardless of its position.

In this paper, we focus on recognizing activities that elderly are able to do (e.g.
ability of elderly person to reach and open a kitchen cupboard). The recognition
of these interesting activities helps medical experts (gerontologists) to evaluate
the degree of frailty of elderly by detecting changes in their behavior patterns.
We also focus on detecting critical situations of elderly (e.g. feeling faint, falling
down), which can indicate the presence of health disorders (physical and/or
mental). The detection of these critical situations can enable early assistance of
elderly.

In this paper, section 2 briefly reviews previous work on human posture recog-
nition and activity recognition using video cameras. Section 3 describes our ac-
tivity recognition approach. Results of the approach are reported in section 4.
Finally, conclusion and future works are presented in section 5.

2 State of the Art

In this section we present firstly previous work on human posture recognition
using 2D and 3D approaches, and secondly previous work on activity recognition.

2.1 Human Posture Recognition by Video Cameras

The vision techniques to determine human posture can be classified according
to the type of model used (explicit, statistical, ...) and the dimensionality of
the work space (2D or 3D). The 2D approaches with explicit models [2]
try to detect some body parts. They are sensitive to segmentation errors. The
2D approaches with statistical models [3] are then proposed to handle the
problems due to segmentation. These two 2D approaches are well adapted for
real time processing but they depend on the camera view point. The 3D ap-
proaches can also be classified in statistical and model based techniques.
They consist in computing the parameters of the 3D model, such as the model
projection on the image plane fits with the input image (often the silhouette).
Some approaches compare the contour of the input silhouette with one of the
projected model. In [4], the authors propose a method to reconstruct human
posture from un-calibrated monocular image sequences. The human body ar-
ticulations are extracted and annotated manually on the first image of a video
sequence, then image processing techniques (such as linear prediction or least
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square matching) are used to extract articulations from the other frames. The
learning-based approaches avoid the need of an explicit 3D human body model.
In [5], the authors propose a learning-based method for recovering 3D human
body posture from single images and monocular image sequences. These 3D ap-
proaches are partially independent from the camera view point but they need to
define many parameters to model the human posture.

In this study, we choose to use an hybrid approach described in [1]. This
approach combines the advantages of the 2D and 3D approaches to recognize
the entire human body postures in real-time. It is based on a 3D human model
and is independent from the point of view of the camera and employs silhouette
represented from 2D approaches to provide a real-time processing.

2.2 Activity Recognition

Previous activity detection research focused on analyzing individual human be-
haviors. Rule-based methods proposed in [6] have shown their merits in action
analysis. Rule-based systems may have difficulties in defining precise rules for
every behavior because some behaviors may consist of fuzzy concepts. Statisti-
cal approaches, from template models, linear models, to graphic models, have
been used in human activity analysis. Yacoob and Black [7] used linear models
to track cyclic human motion. Jebara and Pentland [8] employed conditional
Expectation Maximization to model and predict actions. Aggarwal et al. [9]
has reviewed different methods for human motion tracking and recognition. The
probabilistic and stochastic approaches include HMM (Hidden Markov Model)
and NNs (Neuronal Networks). They are represented by graphs. Hidden Markov
models [10] have been used for recognizing actions and activities, and illustrated
their advantages in modeling temporal relationships between visual-audio events.
Chomat and Crowley [11] proposed a probabilistic method for recognizing ac-
tivities from local spatio-temporal appearance. Intille and Bobick [12] interpret
actions using Bayesian networks among multiple agents. Bayesian networks can
combine uncertain temporal information and compute the likelihood for the tra-
jectory of a set of objects to be a multi-agent action. Recently, Jesse Hoey et al.
[13] successfully used only cameras to assist person with dementia during hand-
washing. The system uses only video inputs, and combines a Bayesian sequential
estimation framework for tracking hands and towel, with a decision using a par-
tially observable Markov decision process. Most of these methods mainly focus
on a specific human activity and their description are not declarative and it
is often difficult to understand how they work (especially for NNs). In conse-
quence, it is relatively difficult to modify them or to add a priori knowledge.
The deterministic approaches use a priori knowledge to model the events to
recognize [14]. This knowledge usually corresponds to rules defined by experts
from the application domain. These approaches are easy to understand but their
expressiveness is limited, due to the fact that the variety of the real world is dif-
ficult to represent by logic. The approaches based on constraint resolution
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are able to recognize complex events involving multiple actors having complex
temporal relationships.

In this work we have used the approach described in [15]. This approach is
based on constraint resolution. It uses a declarative representation of events
which are defined as a set of spatio-temporal and logical constraints. This tech-
nique is easy to understand since it is based on constraints which are defined in
a declarative way.

The next section presents the approach for activity recognition we used in
this paper.

3 The Proposed Activity Recognition Approach

3.1 Overview

The proposed approach is composed of (1) a video analysis component which
contains person detection, person tracking and a human posture recognition, (2)
an activity recognition component which contains a set of video event models
and a video event recognition algorithm. A simplified scheme of the proposed
approach is given in figure 1. Firstly, we present the video analysis component
and secondly the activity recognition component.

Fig. 1. The architecture for the proposed approach. The contribution of this paper is
represented with black background.
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3.2 Video Analysis

In this section we describe shortly person detection and tracking method. We
also describe the used human posture recognition algorithm and we detail the
proposed 3D posture models.

Person Detection and Tracking. For detecting and tracking person we use
a set of vision algorithms coming from a video interpretation platform described
in [16]. A first algorithm segments moving pixels in the video into a binary im-
age by subtracting the current image with the reference image. The reference
image is updated along the time to take into account changes in the scene (light,
object displacement, shadows). The moving pixels are then grouped into con-
nected regions, called blobs. A set of 3D features such as 3D position, width and
height are computed for each blob. Then the blobs are classified into predefined
classes (e.g. person). After that the tracking task associates to each new clas-
sified blob a unique identifier and maintains it globally throughout the whole
video. Figure 2 illustrates the detection, classification and tracking of a person
in the experimental laboratory.

Fig. 2. Detection, classification and tracking of a person. (a) represents the original
image. (b) the moving pixels are highlighted in white and clustered into a mobile object
enclosed in an orange bounding box. (c) the mobile object is classified as a person. (d)
shows the individual identifier (IND 0) and a colored box associated to the tracked
person.

3D Human Posture Recognition. In this section, we firstly present the
human posture recognition algorithm and secondly the proposed 3D posture
models.

– Human Posture Recognition Algorithm: We have used a human pos-
ture recognition algorithm [1] in order to recognize in real time a set of human
postures once the person evolving in the scene is correctly detected. This al-
gorithm determines the posture of the detected person using the detected
silhouette and its 3D position. The human posture recognition algorithm
is based on the combination between a set of 3D human model with a 2D
approach. These 3D models are projected in a virtual scene observed by a
virtual camera which has the same characteristics (position, orientation and



42 N. Zouba et al.

Fig. 3. Horizontal projection of model and detected silhouettes. Io (resp. Im) represents
the overdetected (resp. misdetected) region.

field of view) than the real camera. The 3D human silhouettes are then ex-
tracted and compared with the detected silhouette using a 2D techniques
(projection of the silhouette pixels on the horizontal and vertical axes, see
figure 3).
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∑
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(1)

(α1, α2, β1, β2) ∈ [0, 1]4, α1 + α2 + β1 + β2 = 1

The distance from the detected silhouette to the model silhouette is com-
puted with the equation (2):

dist(Sa, Sd) = α1Ro(H) + β1Rm(H) + α2Ro(V ) + β2Rm(V ) (2)

The most similar extracted 3D silhouette corresponds to the current posture
of the observed person. This algorithm is real time (about eight frames per
second), requires only a fix video camera and do not depend on the camera
position.

– 3D Posture Models: The posture models are based on a 3D geometrical
human model. We propose ten 3D key human postures which are useful
to recognize activities of interest. These postures are displayed in figure 4:
standing (a), standing with arm up (b), standing with hands up (c), bending
(d), sitting on a chair (e), sitting on the floor with outstretched legs (f),
sitting on the floor with flexed legs (g), slumping (h), lying on the side with
flexed legs (i), and lying on the back with outstretched legs (j). Each of these
postures plays a significant role in the recognition of the targeted activities
of daily living. For example, the posture “standing with arm up” is used
to detect when a person reaches and opens kitchen cupboard and her/his
ability to do it. The posture “standing with hands up” is used to detect
when a person is carrying an object such as plates. These proposed human
postures are not an exhaustive list but represent the key human postures
taking part in everyday activities.
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Fig. 4. The proposed 3D human postures

3.3 Activity Recognition

In this section, we firstly describe the video event recognition algorithm and
secondly we present the proposed video event models.

Video Event Recognition Algorithm. The video event recognition algo-
rithm detects which event is happening from a stream of observed persons
tracked by a vision component at each instant. The recognition process takes
as input the a priori knowledge of the scene and the event models.

An event is composed of actors, sub-events and constraints. An actor can be
a person tracked as a mobile object by the vision component or a static object
of the observed environment like a chair. A person is represented by her/his
characteristics: her/his position in the observed environment, width, velocity,...
A static object of the environment is defined by a priori knowledge and can
be either a zone of interest (e.g. the entrance zone) or a piece of equipment (a
3D object such as a table). A zone is represented by its vertices and a piece of
equipment is represented by a 3D bounding box. The zones and the equipment
constitute the scene context of the observed environment.

To recognize the pre-defined events at each instant, the algorithm verifies that
the sub-events are recognized and the constraints are satisfied.

The video event recognition algorithm is based on the method described
in [15]. We have adapted this algorithm to detect in real time some activities of
interest by adding posture.

Video Event Models. The event models are defined using an event descrip-
tion language designed in a generic framework [16]. The video event model cor-
responds to the modeling of all the knowledge used by the system to detect video
events occurring in the scene. The description of this knowledge is declarative
and intuitive (in natural terms), so that the experts of the application domain
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can easily define and modify it. Four types of video events (called components)
can be defined: primitive states, composite states, primitive events and composite
events. A state describes a stable situation in time characterizing one or several
physical objects (i.e. actors). A primitive state (e.g. a person is located inside
a zone) corresponds to a perceptual property directly computed by the vision
components. A composite state is a combination of primitive states. An event
is an activity containing at least a change of state values between two consecu-
tive times. A primitive event corresponds to a change of primitive state values
(e.g. a person changes a zone). A composite event is a combination of primitive
states and/or primitive events (e.g. preparing meal). As general model, a video
event model is composed of five parts: “physical objects” involved in the event
(e.g. person, equipment, zones of interest), “components” corresponding to the
sub-events composing the event, “forbidden components” corresponding to
the events which should not occur during the main event, “constraints” are
conditions between the physical objects and/or the components (including sym-
bolic, logical, spatial and temporal constraints including Allens interval algebra
operators [17]), and “alarms” describe the actions to be taken when the event
is recognized.

In the framework of homecare monitoring, in collaboration with gerontolo-
gists, we have modeled several primitive states, primitive events and composite
events. First we are interesting in modeling event characteristic of critical sit-
uations such as falling down. Second, these events aim at detecting abnormal
changes of behavior patterns such as depression. Given these objectives we have
selected the activities that can be detected using video cameras. For instance,
the detection of “gas stove on” when a person is doing a different activity for
a long time is interesting but cannot be easily detected by only video cameras
and requires additional information such as the one provided by environmental
sensors (e.g. gas consumption sensor). In this paper we are focusing only on
video cameras and contributions with other environmental sensors for activity
recognition belong to other ongoing work.

In this work, we have modeled thirty four video events. In particular, we
have defined fourteen primitives states, four of them are related to the location
of the person in the scene (e.g. inside kitchen, inside livingroom) and the ten
remaining are related to the proposed 3D key human postures. We have defined
also four primitive events related to the combination of these primitive states:
“standing up” which represents a change state from sitting or slumping to
standing, “sitting down” which represents a change state from standing, or
bending to sitting on a chair, “sitting up” represents a change state from lying
to sitting on the floor, and “lying down” which represents a change state from
standing or sitting on the floor to lying. We have defined also six primitive events
such as: stay in kitchen, stay in livingroom. These primitive states and events
are used to define more composite events.

For this study, we have modeled ten composite events. In this paper, we
present just two of them: “feeling faint” and “falling down”.
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There are different visual definition for describing a person falling down. Thus,
we have modeled the event “falling down” with three models:

Falling down 1: A change state from standing, bending, sitting on the floor(with
flexed or outstretched legs) and lying (with flexed or outstretched legs).
Falling down 2: A change state from standing, and lying (with flexed or out-
stretched legs).
Falling down 3: A change state from standing, bending and lying (with flexed
or outstretched legs).

The model of the “feeling faint” event is shown bellow. The “feeling faint” model
contains three 3D human postures components, involves one person and addi-
tional constraints between these components.

CompositeEvent(PersonFeelingFaint,

PhysicalObjects( (p: Person) )

Components( (pStand: PrimitiveState Standing(p))

(pBend: PrimitiveState Bending(p))

(pSit: PrimitiveState Sitting_Outstretched_Legs(p)) )

Constraints( (pStand; pBend; pSit)

(pSit’s Duration >=10))

Alarm(AText(‘‘Person is Feeling Faint")

AType(‘‘URGENT")) )

“Feeling faint” model

The following text shows an example of the definition of the model “falling
down 1”.

CompositeEvent(PersonFallingDown1,

PhysicalObjects( (p: Person) )

Components( (pStand: PrimitiveState Standing(p))

(pBend: PrimitiveState Bending(p))

(pSit: PrimitiveState Sitting_Flexed_Legs(p))

(pLay: PrimitiveState Lying_Outstretched_Legs(p)) )

Constraints( (pSit before_meet p_Lay)

(pLay’s Duration >=50))

Alarm(AText(‘‘Person is Falling Down")

AType(‘‘VERYURGENT")) )

“Falling down 1” model

In this approach we have proposed ten 3D key human postures and thirty four
video event models useful to recognize a set of ADLs of elderly living alone in
her/his own home. In the next section we present experiments we have done in
the Gerhome laboratory and the obtained results.

4 Results and Evaluation

This section describes and discusses the experimental results. First, we describe
the experimental site we have used to validate our approach and models. Then
we show and discuss the results of activity recognition.
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4.1 Experimental Site

Developing and testing the impact of the activity monitoring solutions requires
a realistic near-life environment in which training and evaluation can be per-
formed. To attain this goal we have set up an experimental laboratory (Gerhome
laboratory) to analyze and evaluate our approach. This laboratory is located in
the CSTB (Centre Scientifique de Techniques du Batiment) at Sophia Antipo-
lis. It looks like a typical apartment of an elderly person: 41m2 with entrance,
livingroom, bedroom, bathroom, and kitchen. The kitchen includes an electric
stove, microwave oven, fridge, cupboards, and drawers. 4 video cameras are in-
stalled in Gerhome laboratry. One video camera is installed in the kitchen, two
video cameras are installed in the livingroom and the last one is installed in
the bedroom to detect and track the person in the apartment and to recognize
her/his postures. This laboratory plays an important role in research and system
development in the domain of activity monitoring and of assisted living. Firstly,
it is used to collect data from the different installed video cameras. Secondly,
it is used as a demonstration platform in order to visualize the system results.
Finally, it is used to assess and test the usability of the system with elderly.
Currently, in this experiment, we have collected and processed data acquired by
one video camera. The 3D visualization of Gerhome laboratory is illustrated in
Figure 5.

4.2 Experimental Results

To validate our models, we have performed a set of human behaviors in the
Gerhome laboratory. For this experiment, we have acquired ten videos with one
human actor. The duration of each video is about ten minutes and each video
contains about 4800 frames (about eight frames per second).

For performance evaluation, we use classical metrics. When the system cor-
rectly claims that an activity occurs, a true positive (TP) is scored; a false
positive (FP) is scored when an incorrect activity is claimed. If an activity oc-
curs and the system does not report it, a false negative (FN) is scored. We then
used the precision and sensitivity standard metrics to summarize the system
effectiveness. Precision is the ratio TP/(TP + FP), and sensitivity is the ratio
TP/(TP + FN).

The results of the recognition of the primitive states and events are presented
in table 1. The primitive states “in the kitchen” and “in the livingroom” are
well recognized by video cameras. The few errors in the recognition occur at
the border between livingroom and kitchen. These errors are due to noise and
shadow problems.

The preliminary results of the recognition of the different postures (a, b, c,
e, f, g, h, i, j) are encouraging. The errors in the recognition of these postures
occur when the system mixes the recognized postures (e.g. the bending posture
instead the sitting one). These errors are due to the segmentation errors (shadow,
light change, ...) and to object occlusions. To solve these errors, we plan to use
temporal filtering in the posture recognition process.
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Table 1. Results for recognition of a set of primitive states and events

States and events Ground truth #TP #FN #FP Precision Sensitivity

In the kitchen 45 40 5 3 93% 88%
In the livingroom 35 32 3 5 86% 91%
Standing (a, b, c) 120 95 25 20 82% 79%
Sitting(e, f, g) 80 58 22 18 76% 72%
Slumping(h ) 35 25 10 15 62% 71%
Lying (i, j) 6 4 2 2 66% 66%
Bending (d) 92 66 26 30 68% 71%
Standing up 57 36 21 6 85% 63%
Sitting down 65 41 24 8 83% 63%
Sitting up 6 4 2 1 80% 66%

Fig. 5. Recognition of two video events in Gerhome laboratory. (a) 3D visualization of
the experimental site “Gerhome”, (b) person is in the livingroom, (c) person is sitting
in the floor with outstretched legs.

Fig. 6. Recognition of the “feeling faint” event. (a) person is standing. (b) person is
bending. (c) sitting with outstretched legs.

We show in the figure 5 the recognition of the localization of the person
inside livingroom and the recognition of the posture “sitting in the floor with
outstretched legs”. In the ten acquired videos, we have filmed one “falling down”
event and two “feeling faint” events which have been correctly recognized.

Figure 6 and figure 7 show respectively the camera view and the 3D visualiza-
tion of the recognition of the “feeling faint” event. Figure 8 and figure 9 show
respectively the camera view and the 3D visualization of the recognition of the
“falling down” event.



48 N. Zouba et al.

Fig. 7. 3D visualization of the recognition of the “feeling faint” event. (a) person is
standing. (b) person is bending. (c) sitting with outstretched legs”.

Fig. 8. Recognition of the “falling down” event. (a) person is standing. (b) sitting with
flexed legs. (c) lying with outstretched legs.

Fig. 9. 3D visualization of the recognition of the “falling down” event. (a) person is
standing. (b) sitting with flexed legs. (c) lying with outstretched legs.

5 Conclusions and Future Works

In this paper we have described a cognitive vision approach to recognize a set
of activities of interest of elderly at home by using ten 3D key human postures.
This approach takes as input only video data and produces as output the set of
the recognized activities.

The first contribution of this work consists in the identifying and modeling of
the ten 3D key human postures. These key postures are useful in the recognition
of a set of normal and abnormal activities of elderly living alone at home. The
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second contribution of this work is the modeling of some activities of interest of
elderly.

The proposed approach is currently experimented on small datasets, but we
will next validate the performance of our approach on larger datasets (long
videos on a long term period with different persons). Currently 14 different
video sequences (more than 56 hours) have been recorded with elederly people
in Gerhome laboratory. We plan two other different studies with elderly (+ 70
years) which will take place during the next six months. The first study will
be performed in a clinical center (e.g. hospital, nursing home), and the second
one in a free living environment (home of elderly people). We also plan to study
some other postures and take account gestures in order to detect finer activities
(e.g. kneeling).

Moreover, we envisage to analyze which sensors in addition to video cameras
are the best for monitoring most activities of daily living. Our ultimate aim is
to determine the best set of sensors according to various criteria such as cost,
number of house occupants and presence of pets.

We also envisage to facilitate incorporation of new sensors by developing a
generic model of intelligent sensor and to add the data uncertainty and impre-
cision on sensor measurement analysis.
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Abstract. Two experiments examined the eye movements made when 
remembering pictures of real-world objects and scenes, and when those images 
are imagined rather than inspected. In Experiment 1 arrays of simple objects 
were first shown, and eye movements used to indicate the location of an object 
declared as having been present in the array. Experiment 2 investigated the 
similarity of eye fixation scanpaths between the initial encoding of a picture of 
a real-world scene and a second viewing of a picture and when trying to 
imagine that picture using memory. Closer similarities were observed between 
phases that involved more similar tasks, and the scanpaths were just as similar 
when the task was presented immediately or after two days. The possibility 
raised by these results is that images can be retrieved from memory by re-
instating the sequence of fixations made during their initial encoding. 

1   Introduction 

The eye movements made when looking at images reflects the purpose of inspection, 
with fixations made on regions of interest [1, 2, 3]. The question asked here is 
whether we can guide our eye movements volitionally as part of an image retrieval 
process. When attempting to remember a picture the sequence of eye fixations may 
match the sequence made during the initial inspection, and if this is the case, then it 
may be possible to retrieve a picture using eye movements as an interface for image 
retrieval. Oyekoya and Stentiford [4] have considered the possibility of using an 
operator’s eye movements as a natural tool for content based image retrieval (CBIR), 
whereby image librarians would call up a required picture by imagining it and moving 
their eyes around a blank screen as they would when inspecting it. We consider the 
plausibility of using eye movements as a retrieval tool here with two experiments that 
examine the underlying processes that must be observed if such a CBIR interface can 
be implemented. The first experiment investigates the knowledge that an operator has 
about the locations of components of a display by asking for an indication of location 
by fixation of where a specific object was placed in the original image. In the second 
experiment we compare sequences of fixations – scanpaths – made during initial 
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inspection, during a recognition test, and during retrieval through imagery. The 
experiments are directed at the question of whether operators’ eye movements when 
they imagine a picture can be used as indicators of successful retrieval.  

Are sequences of fixations repeated when re-inspecting or imagining a picture? 
The order and pattern of fixations made by the viewer when looking at a scene has 
been described as a scanpath by Noton and Stark [5, 6]. Their theory predicts that the 
fixations made when first looking at a picture are very similar to those made when 
recognising the same picture at a later time. A number of studies have found that 
when participants view a picture for the second time, the scan patterns they produce 
are very similar to scan patterns produced on first exposure to the picture. For 
example, Foulsham and Underwood [7] presented a set of pictures in a recognition 
memory study, and then presented a second set to which an old/new decision was 
required. Scanpaths were similar when compared between two viewings of the same 
picture (encoding vs. old), and this similarity was greater than control comparisons 
(encoding v new and old v new). It is possible that we do not reproduce the same 
scanpaths over time due to the sequence of eye movements being stored internally or 
being related to an internal visual image, but that we do so because of the bottom-up 
influences of the visual stimulus. Our fixations are attracted by conspicuous or salient 
regions of the image [8, 9, 10], and when we are shown that same picture again at a 
later time, perhaps we simply look at the same regions of the picture again because 
those regions still possess the same low-level properties as when it was first 
inspected. Repeated scan patterns may be generated by viewers remembering how 
they inspected a picture when they first looked at it, but it could be that the features of 
the image - either bottom-up visual features or top-down meaningful features – are 
what drive the sequence of fixations.  

Rather than comparing the fixation scanpath recorded during the initial inspection 
against the scanpath recorded during a recognition test and, as a consequence,  risk 
finding a similarity due to an influence of image characteristics, we could use an 
imagery task. If scan patterns are then reproduced it cannot be due to external bottom-
up influences, as no visual stimulus is present. Brandt and Stark [11] found substantial 
similarities between sequences of fixations made whilst viewing a simple chequer-
board diagram and those made when imagining it later. Holsanova, Hedberg and 
Nilsson [12] used natural, real life scenes and found similar results. Visual input is not 
necessary to elicit repeated fixation patterns: when the imagery task is performed in 
the dark (i.e., without any possible visual features) eye movements still reflect objects 
from both the description and the picture [13]. Since there is no actual diagram or 
picture to be seen during the imagery period in these studies, it is likely that an 
internalised cognitive perceptual model is in control of these repeated scanpaths. In a 
modified version of the imagery experiment, Laeng and Teodorescu [14] found that 
viewers who fixated their gaze centrally during the initial scene perception did the 
same, spontaneously, during imagery. They also showed that viewers who were free 
to explore a pattern during perception, when required to maintain central fixation 
during imagery, exhibited decreased ability to recall the pattern. This is possibly 
because the oculomotor links established during perception could not be used in the 
process of building up a mental image, and this limitation impaired recall. 
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Eye movements are fundamental to Kosslyn’s [15] visual buffer model of imagery, 
which is used to represent an internal image that conserves distance, location and 
orientation of the internal image. Eye movements during imagery would be associated 
with the internal shifts of attention around the representation in the visual buffer. The 
sequence of fixations made at encoding could be stored in the visual buffer as a 
spatial model, creating an internal representation of the visual stimulus. This scanpath 
is then reproduced at imagery to retrieve the internal representation.  

2   Experiment 1: Retrieving an Object 

When trying to imagine where an object was located, can we use eye movements? 
The task in this experiment was simple: viewers looked at an array of common 
everyday objects, and then identified the location of a target object by imagining 
where it was and then moved their gaze to that location. Successful use of eye 
movements to indicate the remembered location is necessary if voluntary gaze control 
is to be used as part of the process of retrieval through imagery. 

2.1   Method 

Nineteen university students participated in the experiment. All observers had normal 
or corrected to normal vision and were naïve as to the purpose of the experiment. 

Participants were seated in front of a monitor that was viewed at a distance of 
60cm. Their head was stabilised on a chin-rest. Displays were presented on a colour 
monitor, and eye movements were recorded with a head-mounted Eyelink II eye 
tracker sampling at 250 Hz and with an average degree of accuracy of <0.5 deg. 
Calibrations were performed prior to the start of each session, and an online drift 
correction was performed prior to the start of each trial.  

Images consisted of a 5 x 5 grid of black squares on a white background with 
simple objects located within 7 of the resulting squares. Each of the 25 squares was 5 
cm x 5 cm in size, with each side subtending approximately 4.6 deg. The central 
square was centred on the fixation point (approx 1 cm in diameter) in the centre of the 
screen (see Fig. 1). The 7 objects in the grid were images of everyday objects were 
chosen from the Tarr Lab Object Databank at  http://www.tarrlab.org 

The grid contained 25 squares, and each of the 24 non-central squares was a target 
square equally often. Each participant completed 48 trials in total (24 target present; 
24 target absent), with each grid containing 7 objects. The second image (test image) 
contained one object located in the central square. The first task was to indicate 
whether the central test image had been presented in the grid. 

Each trial started with a red fixation dot in the centre of an empty grid (see Fig. 1). 
The task was to maintain fixation on the red dot. After a 2 second interval, the red dot 
disappeared and the first image appeared, upon which they were then free to move 
gaze around the screen. The first image contained 7 objects, each placed in a separate 
square. They were asked to try and remember what the seven objects were and in 
which squares they were located. They were informed that they could do this in their 
own time (with a maximum of 20 seconds before being timed out), and that when 
they were able to remember what and where the objects were, they were to then press  
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Fig. 1. An example of a target-present sequence of images used in Experiment 1. After 
inspecting the array of objects a single target object appeared in the centre of the 5 x 5 grid. The 
target object (a raspberry) appears on the right in a square in the second row of the grid. In this 
example the viewer has indicated correctly that the target was present, and a green fixation 
marker has appeared, prompting a re-direction of gaze to the location of the target in the 
original array. Images were presented in colour in the experiment. 

a response button. The duration of the first image therefore varied from trial to trial as 
individuals tried to memorise the 7 objects and their locations.  

After a 2 second interval, this dot was replaced by a second image containing only 
one image of an everyday object, and this object was located in the central square. 
Assuming that the participants were maintaining fixation on the dot then the single 
image would therefore appear at the locus of gaze. The participants then had maintain 
fixation on the object and to press one of two buttons (YES or NO) on the EyeLink 
button box to signify if the object had been present in the original set of 7 objects. If 
they pressed NO, then the trial ended. If they pressed YES, the image was replaced by 
a green fixation dot in the centre of the screen. The green dot was their signal to move 
gaze as accurately as possible over the blank grid to the square where they thought the 
object had been, and to then fixate within that square and to press the YES button 
again. The trial terminated once the YES button had been pressed for the second time, 
and so the duration of the blank screen with the green dot varied from trial to trial as 
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participants “searched” for the correct square. Fig. 1 illustrates a typical trial 
sequence. All movements of gaze were recorded during a trial. Immediately prior to 
the session, participants undertook a practice session of 5 trials.  

To establish how accurate the participants were when saccading from the centre to 
the correct target location on the blank screen, an “ideal” angle was calculated from 
the fixation dot to the centre of each of the 24 squares. This angle was then compared 
against the angle of the first saccade executed after the onset of the green dot that left 
the fixation square and landed in another square. 

2.2   Results 

The mean time taken by the 19 participants to inspect the first image during 
memorisation was 11.61 s.  Participants were successful at recalling whether the 
object had been present or absent, with 80% of the target-present trials and 94% of the 
target-absent trials gaining correct responses. The mean time to correctly decide if the 
sole object at fixation had been was 1928 ms and to respond correctly that it was 
absent the mean was 1375 ms. A paired samples t-test indicated a reliable difference 
(t = 9.02, df = 37, p < 0.001). This is a curious result, and it might be expected that 
viewers would be faster when they know that a target is present. One possibility here 
is that knowledge of the second decision acts to slow them down. When they 
indicated that a target was present they knew that they would be asked a subsequent 
question about its location, and this processing of location information may have been 
initiated early, and interfered with the execution of the first decision. (In a subsequent 
experiment we eliminated this stage, and obtained improved responses – see below.) 
Participants get a higher percent correct when the object was absent from the original 
set, and they also respond faster.  

If the participants pressed the YES button, then the blank screen with the green 
fixation dot would appear. At this point they had to move gaze across the grid to the 
square where they thought the target object had been located and to then press the 
YES button a second time while fixating within that square. We looked at the time 
taken to perform this task, the accuracy of recall (i.e. how often they looked at the 
correct square), and we also looked at how fast and accurate their first saccade was 
when initiating this search. 

The mean time taken to locate a square (and to press the button) when the target 
had been present was 2830 ms. This was similar to the few trials (n=30) where the 
response was a false positive (mean of 2884 ms). 

The spatial memory for target locations, as evidenced by the ability to direct gaze to 
the correct square, was much poorer than the memory for the object itself. Fixation was 
only directed at the correct square on 47% of occasions (i.e. that square was actually 
the target 47% of the time), which is much lower than the 80% accuracy for recall 
shown above. We also looked at each initial saccade that left the central square and 
landed in a separate square of the blank grid, and calculated the angle (out of 360 
degrees) of the saccade and its difference to the “ideal” angle (a straight line between 
the fixation dot and the centre of the target square), its amplitude and its peak velocity. 

The mean difference (or error) between first saccades on all trials that correctly 
fixated the target, relative to the ideal trajectory, was 12 deg, while for those trials  
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where the incorrect square was identified the mean error was 61 degrees (t = 11.21,  
df = 18, p < 0.001). These differences are absolute values, meaning that for those 
saccades that accompanied correct decisions about location, the saccades were likely 
to fall within a 24 deg corridor around the “correct” angle for that target square. This 
is illustrated in Fig. 2 below, with the 122 deg angle illustrating the mean difference 
between initial saccades to incorrectly identified squares and the correct angle for that 
trial’s target. 

There was also a significant difference in the peak velocity of initial saccades that 
were directed to the target, with saccades of correct trials having a peak velocity of 
363 deg/s2 and saccades that initiated gaze towards incorrect locations having a peak 
velocity of 333 deg/s2 (t = 2.56, df = 18, p = 0.02). Viewers make more direct 
saccades to the target when they get it right (i.e. they are not often going off in 
another direction before returning to the correct square), and they also make 
significantly faster eye movements on the correct trials. 

 

Fig. 2. The mean difference between the direction of the initial saccade and a straight line 
towards a target in square Y as an example. The angles of all initial saccades that left the 
central square were calculated, and the difference between these and the straight line to the 
target determined. For those trials where the correct target square was fixated, this “error” was 
12 deg. As the error could be on either side of the straight line, we illustrate this as a 24 deg 
angle around the line (fine dashed lines). For those trials where the incorrect square was fixated 
at button press the error was 61 deg, here illustrated as a 122 deg angle (thick dashed line). 
When there was no decision about whether the target had been presented, because there was a 
target present on every trial, the saccadic “error” was reduced to 9 deg. 
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In a subsequent version of the experiment, with a new sample of 19 participants 
drawn from the same population as used here, we eliminated the decision as to 
whether the target object had been presented in the array – all trials presented targets 
that had been presented. Viewers had only to move their eyes to the position in the 
array where the target had appeared. The correct location was selected on 70% of 
occasions when this procedure was used, and the accuracy of the initial saccadic 
movement improved to 9 deg, relative to the 24 deg when there was an intervening 
decision about whether the target had been presented. 

3   Experiment 2: Retrieving a Picture of a Real-World Scene 

The aim of this experiment is to investigate whether sequences of eye fixations are 
similar during a recognition test and during an imagery test, relative to the sequence 
during initial inspection. Viewers were again required to recognise the images 
inspected, and then an imagery task was conducted. One of the aims of current 
experiment is to determine whether scanpaths at encoding and imagery are stable over 
extended periods of time. If fixation scanpaths are to be usable as CBIR aids they 
would need to be stable over time, and so after a two day interval the imagery task 
was repeated.  

3.1   Method 

Fifteen university students took part in this experiment. All participants had normal or 
corrected-to-normal vision. Inclusion in the study was contingent on reliable eye 
tracking calibration and the participants being naïve about eye movements being 
recorded.  

Eye position was recorded using an SMI iView X Hi-Speed eye tracker, which 
uses a tower-based ergonomic chinrest and provides gaze position accuracy of 0.2 
deg, with a sampling rate of 240 Hz. This eye tracker records eye position non-
intrusively. A set of 60 high-resolution digital photographs of real-world scenes were 
used as stimuli, sourced from a commercially available CD-ROM collection (“Art 
Explosion”). Each picture was distinctly individual, in that given a short description it 
could be not mistaken for any of the others: in a pilot study a further 10 participants 
correctly matched 100% of the pictures and their intended labels. The labels were 
used during the imagery phases of the experiment. Half the pictures were designated 
as “old” and shown in both encoding and test phases, while the other half were 
labelled “new” and were shown only as fillers at test. Pictures were presented on a 
colour computer monitor at a fixed viewing distance of 98 cm that gave an image that 
subtended 25.03 by 18.83 deg. Examples of two of the images used, and their labels, 
are shown in Fig. 3.  

Participants were told that their pupil size was being measured in relation to mental 
workload. The first phase of the study involved viewing a set of 30 pictures, presented 
in a random order, in preparation for a memory test. Each picture was preceded by a 
fixation cross for 1 s, which ensured that fixation at picture onset was in the centre of 
the screen. Each picture was presented for 3 s, during which time participants moved 
their eyes freely around the screen. 
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Fig. 3. Examples of images used in Experiment 2. All images could be identified by a single 
word or short phrase – “the American football game” and “the penguins” in the case of the two 
images here. Images were presented in colour in the experiment. 

After all 30 pictures had been presented, participants saw a second set of pictures 
and had to decide whether each picture was new (not seen before in the experiment) or 
old (from the previous set of pictures), pressing N or O on the keyboard if the picture 
was new or old. Sixty stimuli were presented in a random order, 30 of which were old 
and 30 new. Each picture was again shown for 3 s and participants could only make a 
response after this time. This was to encourage scanning of the whole picture. 

After all 60 pictures in the recognition test had been shown, the participants took a 
break before performing an imagery task. This time they saw 30 white screens with a 
short sentence describing one of the pictures they had just seen. All the pictures in this 
imagery task had been seen previously. The pictures appeared in a random order. 
Participants were asked to imagine the picture described and try to remember 
everything they could about it. Each description appeared for 3 s and then the screen 
went blank for 5 s, in which time they attempted to imagine the stimulus. 

Participants returned two days later to perform the last imagery task again. The 
procedure was identical and all of the descriptions of pictures in this task had 
previously appeared in the first imagery task, and were presented here in a new 
random order.  

3.2   Results 

In the following analyses data were excluded from trials where the fixation at picture 
onset was not within the central region or when calibration failed. Recognition 
accuracy was very high (97.11%) and no further analysis was performed on this 
measure. The measure of eye fixation behaviour for this experiment used string 
analyses for the comparisons of sequences of fixations.  

Fixation sequences were analysed using string editing, to identify the similarity 
between sequences produced on encoding and imagery, encoding and recognition, 
encoding and delayed imagery, imagery and recognition, imagery and delayed 
recognition, and recognition and delayed imagery. This string editing technique has 
been described in detail elsewhere [7, 11, 16, 17], and involves turning a sequence of 
fixations into a string of characters by segregating the stimulus into labelled regions. 
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The similarity between two strings is then computed by calculating the minimum 
number of editing steps required to turn one into the other. An algorithm for 
calculating the minimum editing cost was then applied to derive a single value that 
represents the similarity between two strings or scanpaths [7, 11].  

For each participant, the scanpath recorded on first viewing each image was 
calculated, and compared against that participant’s viewing during the recognition 
task. This comparison delivered a string similarity value for each picture, and these 
values were then averaged to generate a single value for each participant. This process 
was repeated so that we could also compare initial encoding against initial imagery, 
against delayed imagery, and to compare initial imagery against delayed imagery. The 
results of the comparisons are shown in Fig. 4, with perfect similarity having a value 
of 1. Sequences of eye movements were less similar when comparing encoding and 
imagery then when comparing encoding and recognition. We compared string 
similarities between the two encoding and imagery phases against string similarities 
between encoding and recognition. An ANOVA showed a reliable effect of string 
comparison type (F(3,42) = 12.66, p<0.001). 
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Fig. 4. Differences in fixation sequence similarities (means and SEMs), using Levenshtein’s 
string-editing method, between the encoding, imagery, and recognition phases. 

Greatest similarity is seen between the fixation sequences made during the two 
imagery phases, and moderately high similarity between the sequences during 
encoding and recognition, but all four comparisons are reliably greater than the 
similarity score expected by random fixations. To determine the string similarity that 
would be expected by chance we matched each scanpath from an individual 
participant against that obtained with a different picture viewed by the same 
participant. The comparison picture for each scanpath was selected randomly.  
Averaging over all pictures and over all participants, this procedure generates a string 
similarity by chance of 0.00742, where the maximum is again 1.  

The similarity scores shown in Fig. 4 were compared against each other. Post-hoc 
comparisons showed that there were reliable differences comparing the string 
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similarity scores between initial encoding v initial imagery and initial encoding v 
recognition memory (p<0.05), with more similarity between scan patterns involving 
recognition than imagery. There was also a difference between initial encoding v 
initial imagery and initial encoding v delayed imagery (p<0.05). The similarity 
between fixation sequences during encoding and recognition, when the image was 
available for inspection, was greater than that between encoding and either of the 
imagery tests. The similarity between initial imagery v delayed imagery was also 
greater than either of the similarity scores involving encoding and imagery: initial 
imagery (p<0.001) and delayed imagery (p<0.001). There was also greater similarity 
between the two imagery tests than between encoding and recognition (p<0.01). 

4   Discussion 

Participants in both experiments were very good at identifying images as old or new. 
The accuracy rate was so high because each picture had to be distinctly individual in 
order for the imagery and delayed imagery tasks to work. This made it easy to decide 
which pictures had been seen before and which had not.  

Average fixation duration were measured and analyses found a main effect of 
group in that participants in Task 1 made shorter fixations than participants in Task 2. 
Average fixation duration at encoding was almost identical for Task 1 and Task 2; 
suggesting that the groups were well matched and the differences between groups in 
other conditions were affects of the experimental design. Participants in Task 1 were 
asked to imagine the picture soon after they has seen the visual stimulus, whereas in 
Task 2 participants saw all the stimuli at once, then were given a recognition memory 
test before an imagery task. So, the pictures in Task 1 should have been easier to 
imagine as they were still in short term memory and there was no decision to be made 
about which picture should be retrieved – it was always the picture most recently 
seen. Therefore participants may have been able to remember where different parts of 
the scene were without having to move their eyes as much. Additionally, participants 
in Task 1 were given a recognition memory test in between encoding and imagery, 
which involved twice as many stimuli than were in the imagery task, so the confusion 
due to an increased memory load could have resulted in longer fixation times while 
participants tried to retrieve the correct image. This could be argued as support for 
Kosslyn (1994) in that the increase in working memory load makes it harder to access 
internal information from the ‘visual buffer’. Furthermore, the immediate imagery 
phase in Task 2 was more difficult as it involved only seeing a word that described a 
picture rather than an image itself, it may have taken longer to recall what features of 
the picture were at a certain point of fixation. This may also have resulted in longer 
fixation durations during the imagery attempts.  

The average fixation durations in both Tasks during the first imagery attempt were 
almost identical to those when the imagery attempt was repeated two days later. Laeng 
and Teodorescu (2002) found that eye movements when participants first saw the 
picture were very similar to those at imagery and that if participants who moved their 
eyes freely in encoding were then made to keep a central fixation at imagery, recall 
performance decreased dramatically. This suggests that eye movements at first viewing 
help to encode the picture and reproducing those eye movements at a later stage may 
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help recall that picture. More recent research has also found that scan patterns are also 
stable over multiple viewings (Humphrey & Underwood, submitted). So, one 
hypothesis for the similarity of average fixation durations on both Tasks at imagery 
and delayed imagery is that eye movements at imagery become associated with the 
memory of the picture so that in the delayed imagery condition, eye movements are 
very similar to the first imagery task because they act as cues that can be used in 
retrieval. This supports the idea of a ‘visual buffer’ to the extent that it seems possible 
to retrieve an internal image from working memory; however, these results suggest that 
if such a mechanism does exist, it must be flexible. Otherwise it would be expected 
that eye movements at encoding would be the same as those at recognition and 
imagery and delayed imagery, which they are not. At recognition, participants in Task 
1 may have made shorter fixations because they had ‘inspected’ each picture twice 
before the recognition test (once during encoding and once during imagery) so 
recognition may have been easier and less exploration of the picture was needed.  

In both Tasks, participants made shorter fixations at encoding and at recognition 
than at imagery or delayed imagery. At encoding, the participants saw the pictures for 
the first time and therefore tried to take in as much information as possible in the 3 
seconds available. The average fixation durations of 350 ms for Task 1 and 374 ms 
for Task 2 at encoding are consistent with previous studies. At recognition, 
participants saw the pictures for a second time. Our previous study also found a high 
similarity between scan patterns at encoding and recognition [7]. The finding that 
average fixation duration is similar at encoding and recognition (averaging over both 
Tasks) suggests that the visual buffer may store temporal information as well as the 
spatial pattern of eye movements. 

Scan patterns produced at each condition were compared to every other condition 
using string analysis to create a similarity score. In Task 1 (imagery first), scan 
patterns were more similar when comparing imagery and delayed imagery than when 
comparing encoding and imagery or encoding and delayed imagery or imagery and 
recognition. This could be explained in terms of mixed and pure process comparisons. 
When comparing imagery and delayed imagery, the task was the same in Task 2 and 
very similar in Task 1, in that both conditions involved recalling a memory without 
any immediate visual cues. This could be referred to as a ‘pure process comparison’. 
Whereas when comparing encoding and imagery or encoding and delayed imagery or 
imagery and recognition, one of the conditions in each comparison involved visual 
input from the stimulus and the other involved recalling without any visual input. 
These could be referred to as ‘mixed process comparisons’, and produce lower 
similarity scores. 

The most similar scan patterns came from pure process comparisons where there 
was similar visual input in each condition (imagery compared to delayed imagery and 
encoding compared to recognition), and from comparisons that mimicked the same 
retrieval processes (imagery compared to recognition, and delayed imagery compared 
to recognition). The lowest scan pattern similarity scores came from mixed process 
comparisons (encoding compared to imagery, encoding compared to delayed imagery, 
and imagery compared to recognition in Task 1). The more similar the retrieval 
process is to the encoding process, the more similar the scan patterns produced. This 
provides evidence in favour of the use of a visual buffer, as suggested by Kosslyn 
[15], in that visual information is stored in working memory, but it also suggests that 
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the model may be more complicated than simply shifting attention to different parts of 
an internal image. The relationship between the encoding and retrieval process seems 
to be very important and one might even suggest the existence of facilitatory and 
inhibitory pathways within the model. 

Propositional accounts such as that of Pylyshyn [18] argue that there is no such 
thing as the visual buffer and that when participants are asked to “imagine X” they 
use their knowledge of what “seeing X” would be like, and they simulate as many of 
these effects as they can. However, it seems very unlikely that participants are able to 
mimic a behaviour so precisely in their eye movements. In agreement with Johansson 
et al [13] the number of points and the precision of the eye movements to each point 
are too high to be remembered without a support to tie them together in a context, 
such as an internal image. This is further supported by the finding that temporal 
information as well as spatial information is reproduced at retrieval and is consistent 
over time as long as the same retrieval process is used. Furthermore, if participants 
did store spatial scene information as a large collection of propositional statements, 
scan pattern similarity should have remained constant across conditions despite 
changing the retrieval task, but this was not the case. 

The finding that scan patterns at imagery were highly similar to those at delayed 
imagery (48 hours later) suggests that they are stable over time. This challenges the 
suggestion that the sensorimotor trace is stored only in short-term memory. The 
similarity between the scan patterns also lends support for Scanpath Theory [18], 
which suggests that since there is no actual diagram or picture to be seen during the 
imagery period, it is likely that an internalised cognitive perceptual model is in 
control of these scan patterns. 

Could eye movement scanpaths be used in the retrieval of images (CBIR) from 
large pictorial libraries? For such an interface to operate, the viewer’s eye movements 
when attempting to retrieve an picture must be distinctive in that they should identify 
the picture being imagined. The scanpath would not need to be unique, but the 
interface would be most functional if a scanpath delivered only a small number of 
candidates from the library. The present experiments give some reason to believe that 
a scanpath-based interface might be workable. In the first experiment we established 
that viewers have good location memory when looking at arrays of objects, and in the 
second experiment we compared the scanpaths made when first viewing a picture 
against both a later viewing and later imagery tests. The similarity between scanpaths 
did not approach unity, but for each comparison it was reliably better than chance 
would predict. Scanpaths may be sufficiently distinctive to identify the associated 
image. Cerf, Harel, Huth, Einhäuser and Koch [20] have recently presented evidence 
that scanpaths are not only distinctive but that they can indeed be used in a 
discrimination task. When viewers are presented with a set of images and with a set of 
scanpaths from one viewer looking at those images, then matching the scanpath with 
its image can be performed reliably better than chance. People can identify the 
scanpath that is derived from a specific picture. 

To conclude, in accordance with Johansson et al [13] the results of this paper lend 
support to Kosslyn’s [15] visual buffer model of imagery, and challenge Pylyshyn’s 
[18] propositional visual index model. The variations in scan pattern similarities 
caused by manipulation of the retrieval processes suggests that the visual buffer may 
be more complicated than previously thought, with possible facilitatory and inhibitory 
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pathways, and also that scan pattern theory and the visual buffer may be linked. The 
sequence of fixations made at encoding are stored in the visual buffer as a spatial 
model, creating an internal representation of the visual stimulus. This scan pattern is 
then reproduced at imagery to retrieve the internal representation. The use of eye 
fixation scanpaths as an interface for the content based image retrieval (CBIR) of 
pictures from libraries remains a viable possibility, given that viewers can direct their 
eyes to indicate the previous locations of objects in scenes, and that scanpaths when 
imagining a scene are reliably similar to those made during initial inspection. Cerf et al. 
[20] have also demonstrated that viewers can identify a picture from a small set of 
candidates on the basis of a scanpath made in response to that picture, again 
demonstrating the viability of using scanpaths in a CBIR interface. The absence of a 
perfect match between scanpaths at encoding and during imagery indicates that when 
retrieving the required picture a scanpath-based interface may deliver a set of 
candidates rather than the unique picture that is required. 
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Abstract. This paper presents a threefold model of information seek-
ing. A visual, a semantic and a memory map are dynamically computed
in order to predict the location of the next fixation. This model is applied
to a task in which the goal is to find among 40 words the one which best
corresponds to a definition. Words have visual features and they are se-
mantically organized. The model predicts scanpaths which are compared
to human scanpaths on 3 high-level variables (number of fixations, aver-
age angle between saccades, rate of progression saccades). The best fit to
human data is obtained when the memory map is given a strong weight
and the semantic component a low weight.

Keywords: computational model, information seeking, visual saliency,
semantic knowledge, memory.

1 Introduction

Over the past decade, a large amount of writings or contents has become avail-
able to the web user. However in the same time, there has been relatively limited
progress towards a scientific understanding of the psychology of human interac-
tion with the web. Detailed integrated cognitive models are difficult to create,
limited to very narrow experimental conditions of interaction and mostly unable
to face with the semantics of web contents.

One of the most frequent tasks on the web consists in seeking information
on pages. Searching for information requires defining a given goal that may be
precise or vague, more or less variable along the navigation. When the goal
is well-defined, top-down models like act-r [1] predict relatively well how the
information is retrieved on the web [2]. When the goal is ill-defined, the user
must rely on data displayed on the page and incrementally build/maintain into
memory the goal to reach information. Such task requires substantial acquisition
and integration of knowledge coming from external sources [3] in order to better
define goals, available courses of action, heuristics and so on. Modeling in this
case must take into account perceptual information carrying out mostly bottom-
up processes that analyze data presentation along the visual exploration of pages
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and guide the user attention. However, this visual processing is closely related to
content processing and any computational model (psychologically valid) has to
explain how this integration of information is generated on-line to verify whether
the goal is reached or not.

While a number of studies have investigated this activity, very few cognitive
models are satisfying. Some models are very general pointing out the activity of
information seeking [4,5,6] but saying nothing or very few about the underlying
cognitive processes. Others are too specific dedicated to web navigability as
colides [7] or some extensions of act-r model such as snif-act [8] or bsm [9].
The scope of the paper is to sketch an integrated cognitive model that account
for both visual and semantic processing during information seeking.

2 Information Seeking: 3 Components

Seeking information (i.e, a word) in a document requires from the user to pro-
cess two sources of information: visual information (i.e, exogenous information)
and semantic information (i.e, endogenous information). The former refers to
low-level visual features involving bottom-up selective processes while the latter
refers to word meaning represented in semantic memory and entails top-down
processes. Both visual and semantic information have been shown to guide the vi-
sual scanpath, the gaze tends to move towards locations that are visually salient,
but it is also attracted to regions that are semantically relevant with respect to
the current search goal. Let’s describe more precisely this respective influence.

2.1 Visual Information

Computational models of selective visual attention have attracted growing levels
of interest during this last decade. The purpose is to predict where humans look
when they perform a visual detection task from a bottom-up perspective. Most of
these models are mainly based on two original concepts: the Feature Integration
Theory [10]. Among them, the most popular is proposed by Itti and Koch [11]. It
is based on a feature decomposition of the visual stimuli (natural visual scenes),
and a competition-fusion process between the parallel feature maps that extracts
a visual saliency map. The highest salient regions are then segmented and sorted
according to their saliency value. For the first eye fixations on a picture, these
models fits well the eye movements data when the visual stimuli have little
semantic information and when the task is free without explicit task driving the
scene exploration [12]. In the case of more demanding visual search, the visual
saliency is progressively modulated over time by semantic and cognitive controls,
depending of the type of the scene (a priori knowledge of the scene) and the task
[13]. See for example the discussions in [14]. Due to this complexity, few models
integrate these two pathways. Among recent propositions, [15] extracts saliency
regions through interactions with a working memory and a semantic and visual
long term memory. In our context of information seeking, visual stimuli can be
considered as more simple than natural scenes from the point of view of the
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image features, but very complex from the point of view of the meaning and the
semantic of the scene. Thus these bottom-up models must be highly simplified
in the final model, but they must integrate specificities of reading tasks as it is
proposed in [16].

2.2 Semantic Information

Looking for a word entails also the automatic access to semantic memory. Only
very few computational models of information seeking have taken into account
this top-down process probably due to the difficulty to represent meaning for
a computer. However, since the development of Latent Semantic Analysis [17],
meaning representation can be computed and estimated. Basically, lsa takes
a huge corpus as input and yields a high-dimensional vector representation for
each word, usually about 300 dimensions. It is based on a singular value decom-
position of a word × paragraph occurrence matrix, which implements the idea
that words occurring in similar contexts are represented by close vectors. Such
a vector representation is very convenient to give a representation to sentences
that were not in the corpus: the meaning of a sentence is represented as a linear
combination of its word vectors. Therefore, we can virtually take any sentence
and give it a representation. Once this vector is computed, we can compute
the semantic similarity between any word and this sentence, using the cosine
function. The higher the cosine value, the more similar the words are.

One of the first models attempting to explain information seeking by using
lsa was colides (Comprehension-based Linked model of Deliberate Search) [7].
It describes how people attend to and comprehend information patches on indi-
vidual webpages. It is a simulation model of navigation trying to extend a series
of earlier models developed by Kitajima & Polson and the Kintsch’s construction
integration theory of text comprehension. In colides, the description of a web
page is made up of a large collection of objects competing for users’ attention,
which are meaningful units and/or targets for action. Users manage this com-
plexity by a two-phased processes: 1) an Attention Phase where users segment
the page into regions and focus on a region of the page; 2) an Action Selection
Phase in which users first comprehend each of the objects (e.g., hypertext link,
graphic, radio button, etc.) that can be acted on in the focused-on region, includ-
ing the consequences of acting on the object. Then they select one of the actions,
usually clicking on one of the available hyperlinks. In both phases, the user’s be-
haviors are determined by the perceptions of semantic similarity between the
user’s goals and the descriptions of alternative regions or actions. This similarity
is calculated by lsa. Despite this interesting semantic component, colides does
not describe precisely how low-level information coming from vision or attention
processes can guide the user gaze and orient the selection.

2.3 Memory Mechanism

A model of selective visual attention and scanpaths would be incomplete with-
out describing the process, by which the currently attended location is prevented
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from being attended again, this mechanism is known as the Inhibition of Return
(ior). The ior refers to an increased difficulty of orienting to a location to
which attention has previously been directed. This possibly ensures that fixa-
tions are less likely to return to a previous point of high salience [18]. Pratt and
Abrams [19] reported that the ior of attention is found only for the most re-
cently attended of two cued locations but other has shown that in more complex
environments more possible locations may be involved [20].

3 Model

Our model is a spatio-temporal model based on the dynamic integration of visual
and semantic information associated to a simple memory mechanism. It aims at
describing in a cognitively plausible manner how visual, semantic and memory
processes interact in order to predict eye movements in an information-seeking
task. Each of these three components of our model is implemented by means of
a conditional heat map of the current image, in which each of its elements is
assigned a weight representing its relevance for the given component. Each of
these maps is conditional on the location of the current fixation. The memory
map is also conditional on the entire scanpath. These three maps are therefore
continuously updated during the simulated visual search. Basically, they work
in the following way: - the visual component integrates both the specific behav-
ior of the human retina and the visual properties of the scene. Therefore, this
component gives high weights to the fovea, but also to visually salient elements;
- the semantic component gives high weights to the current zone if its seman-
tic similarity with the goal is high, since the solution might be close; however, if
this similarity is low, the current zone elements are assigned low values, meaning
that is it probably not an interesting area; - the memory component strongly
decreases the weight of the previous fixation zone, in order not to move back to
it. However, since human memory is limited, these values tend to return to nor-
mal values over time. The three maps are integrated by a weighted sum and the
simulated gaze is moved towards the best-weighted zone. Once the new fixation
has been selected, maps are updated accordingly, then a new fixation is chosen,
and so on. From an initial fixation point, our model thus produces a scanpath.

3.1 Task

Our final goal is to apply this model to complex web pages in which visual and
semantic information are highly salient and generally not congruent. However,
we first implemented and tested this general model on a simple task in order
to control parameters as much as possible. Therefore, we largely simplified a
general web page to only keep minimal visual and semantic data. We ended up
with images containing 40 independent words (Fig. 1).

User goal. We formalized the goal the user is pursuing by considering that this
user is seeking a particular piece of information. This item is defined by the class
it belongs to and its specific features within this class. For instance, the user may



Towards a Model of Information Seeking 69

Fig. 1. Example of image. Instruction is: quel est l’aliment le plus sucré ? (what is the
sweetest food?). Correct answer is confiture (jam).

look for a scientific publication given its title, a tennis result for a specific player,
a restaurant that is open on Sunday, etc.

Our experimental users are thus instructed to find a specific word in the
image which belongs to a given category and is the best at satisfying a given
feature. This question is linguistically expressed by such a sentence: find the
most [feature] [category]; for example, find the most alcoholized beverage or
find the roughest sport. In the remainder of this paper, this user goal will be
called instruction to avoid any confusion with the word the user should find.

Visual and semantic features of words. Each of the 40 words of each image
has a visual feature and a semantic feature.

For the moment, the only visual feature of words is their font size, from 13 to
19pt. In a future experiment, words will be also characterized by colors.

We also organized the 40 words in order to reproduce a very common property
of our world which is that objects that are similar to each other tend to be near
each other. This semantic-spatial congruency helps us a lot when we search
information: in newspapers, football and tennis results are close to each other;
in supermarket, all vegetables are in the same place and they are close to fruits.

In each of our images, 7 words belong to the same category, including the
target word. For instance, there are 7 alcoholized beverages in the first image
mentioned previoulsy, 7 names of sport in the second one, etc. All 33 other words
are of decreasing semantic similarity with the instruction.

Figure 1 presents such an image, the instruction being Find the sweetest food.
The target is confiture (jam). The six words that belongs to the same category
are citron (lemon), crème (cream), salade (salad), viande (meat), soupe (soup)
and chocolat (chocolate). Close to the target are also words related to food, like
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saveur (flavour), marmite (cooking-pot), litre (liter), but the more distant words
are from the target, the less similar they are.

We tried to be as much objective as possible in the design of these images.
To that end, we created a semantic space by applying Latent Semantic Analysis
(lsa) [17] to a 13 million-word French corpus composed of novels, newspaper
articles and encyclopedia chapters. Many articles in the literature have shown
high correlations between lsa cosines and human judgements of similarity [21].
We thus relied on this lsa semantic space to define our 18 images. The procedure
was the following:

– 18 [feature]-[category] instructions were defined;
– for each instruction, semantic similarities between the instruction and all

words whose length was between 5 and 9 letter long and lsa weight was
between .3 and .7 (medium frequency) were computed;

– the 7 best words which belonged to the category were selected;
– 33 other words were randomly selected at regular intervals between a 0 se-

mantic similarity and the semantic similarity of the 7th previous word. For
instance, the list corresponding to the instruction sport brutal (rough sport)
is the following (similarity values are in parentheses):

1. football (soccer) (.71)
2. rugby (rugby) (.69)
3. tennis (tennis) (.57)
4. basket (basketball) (.48)
5. cyclisme (cycling) (.43)
6. course (run) (.42)
7. voile (sailing) (.38)

8. gardien (goalkeeper) (.37)
9. victoire (win (.36)

10. vainqueur (winner) (.35)
...

37. charbon (coal) (.02)
38. chêne (oak) (.01)
39. domicile (home) (.01)

– semantic similarities between all pairs of words were computed and a Multi-
Dimensional Scaling procedure was run to assign all words 2D coordinates;

– all coordinates were scaled in order to fill an entire 1024x768 screen;
– in order to avoid word overlapping, 80 non-overlapping positions (NOP) were

randomly defined and each word was moved to a close NOP such that the
sum of these moves was minimum.

In order to select targets and be more precise about the 7 first words which
play an important role in the task, we controlled their semantic similarity with
the instruction by asking 28 participants to assess their similarities with the
instruction on a 5-point scale. The target was defined as the word which was
best-rated. We also computed a Student test between the first and second best-
rated words to make sure there was no ambiguity on the target. In 4 cases out
of 18, this difference was not significant. We then removed the second best-rated
and replaced it by a word which was not highly similar to the instruction.

Experimental conditions. Last but not least, in order to investigate the rel-
ative contribution of semantic versus visual factors, we defined three visual con-
ditions and two semantic conditions. Semantic conditions are (1) semantic or-
ganization of words as defined previously; (2) no semantic organization : words
are randomly assigned to the locations of the previous condition.
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Visual conditions are (1) random assignment of visual features to words from
font size 13 to 19; (2) no visual features at all; (3) visual features are congruent
to spatial locations: words that are close to the target have higher font size.

We therefore ended up with 108 images: 18 instructions x 2 semantic con-
ditions x 3 visual conditions. We now present how we implemented our visual,
semantic and memory maps to predict scanpaths on these images.

3.2 Maps

The unit of our maps should normally be the pixel, but for the sake of psycho-
logical validity, we are currently using the word since our images contain nothing
but words. Actually, users are not looking for a region of pixels but for an object,
here a word. Let us take an example. Suppose our model has already made 7
fixations on an image from which the instruction was: find the most dangerous
fish. lt is now fixating the word baleine (whale).

Figure 2 displays the 3 maps corresponding to this scanpath as well as the
integrated map. Word colors represent weights: the darker, the higher. When
summing up the 3 maps, words are given new weights. The next fixation in made
on the word that obtained the highest weight (requin (shark) in our example).

(a) (b)

(c) (d)

Fig. 2. Examples of (a) visual, (b) semantic, (c) memory and (d) integrated maps
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Let us now detail how we implemented each map. Each one dynamically assign
a weight to each word, conditional on the current scanpath. These weights are
in-between 0 and 1: the higher the more attractive.

Visual map. Two kinds of information could affect bottom-up gaze movements:
the physiological features of the retina which tend to promote local areas over
further ones, and the visual saliency of the current image. Our visual map is
therefore a classical visual saliency map multiplied by a filter corresponding to
physiological parameters, namely the visual acuity per degree of eccentricity.
weightv(word)=visualSaliency(word) ∗ visualAcuity(word, currentF ixation)

In our experiment, the saliency of each word only depends on the printed
surface of the word, roughly computed as the square of its font size multiplied
by its number of characters and normalized to be in the [0,1] range.

visualSaliency(word) = nbChar(word)/9 ∗ (fontSize(word)/19)2

The visualAcuity function depends on the distance between the current fix-
ation and the given word, following the classical curve of visual acuity as a
function of eccentricity.

Semantic map. As we mentioned previously, the underlying assumption of our
semantic component is that spatial proximity reflects semantic similarity: things
that belong to the same category are usually near each other in our world. If
you are seeking cauliflowers in a brand new supermarket and you are in front
of laundry soaps, you would better avoid the current area and search elsewhere.
However, if you are in front of carrots, you are almost there! We implemented
this idea in the following way: first we computed the semantic similarity between
the fixated word and the instruction, using lsa. If this similarity is under 0.21,
the weights of the current zone are given low values, following a Gaussian around
the current fixation. If the similarity is above 0.2, the weights are given higher
values still following a Gaussian around the current fixation. The height of the
Gaussians depends on the similarities: weights are maximum for a word close
to the current fixation and a high similarity between the current word and the
instruction. Figure 3 shows the height of the Gaussian as a function of the
semantic similarity and examples of Gaussians as a function of the distance
from the current fixation.

Memory map. Humans generally do not move back to locations previously
visited, although this can be sometimes observed. In the literature, this func-
tionality is usually implemented by means of an inhibition of return mechanism
which prevent models from moving back to the previous fixations. In order to
have a more flexible mechanism, our memory map strongly decreases the weight
corresponding to the last fixations, but slightly increases all previously visited
fixations. The latter aims at modeling a forgetting mechanism, so that the model
could still go back to words that were visited several saccades before. Basically,
1 This value of 0.2 is usually considered in the lsa literature as a threshold under

which items are unrelated.
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Fig. 3. (a) Semantic Gaussian height as a function of semantic similarity; (b) Examples
of Gaussians as a function of the distance from the current fixation.

Fig. 4. Memory weights as a function of the number of intervening words

the current fixation is given a weight of 0, meaning that we do not want to
go back to it, and weights increase as the number of intervening words in the
scanpath increases (Fig. 4).

Map integration. Our model was designed in order to limit as much as possible
the number of free parameters. We tried to put a cognitively-based rationale
behind each component parameters. However, we did not set the weight of each
component in the general performance of the model. Which component is playing
the larger role? Is the semantic process important in such a task? Is memory
so crucial? Is visual information necessary at all? There is no reason to assume
that visual, semantic and memory processes play identical roles. Therefore, they
are integrated to form the general map by means of a weighted sum:

Mgeneral = αV .Mvisual +αS .Msemantic +αM .Mmemory, αV +αS +αM = 1

The comparison to experimental data will tell us which are the best values
for these weights. Before explaining this comparison, we now present the way
experimental data were collected.
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4 Comparison to Experimental Data

4.1 Experiment

Participants. Forty-three students (average age 20.9 years) participated in the
experiment. Each received 5=C for their participation in this experiment, and all
had normal or corrected-to-normal vision.

Stimuli. Images were displayed on a computer monitor (1024*768 pixels) at a
distance of 50 cm from the seated participant, generating a image subtending 42
horizontal deg. of visual angle.

Procedure. Each subject was in the semantic condition or not and there were
6 images with visual feature facilitating (closer the target, bigger the font size), 6
neutral, and 6 with randomly visual feature (18 trials). Each trial begin with an
instruction, followed by a cross fixation. After the subject gazed their fixation
on a corner of the display, an image appeared containing the 40 words and
observers were instructed to find the best answer as soon as possible. An image
was displayed until the subject responded without maximum delay. None of the
images used in the experiments were used during the training.

Apparatus. The right eye was tracked using EyeLink II, which is a head
mounted eye tracking device (500 Hz Sampling Rate). This was used to record
the position and duration of fixations during the search.

4.2 Comparison

Remind that our goal is to find the αV , αS and αM parameters. Our method is
to compare human and model scanpaths on various combinations of αV , αS and
αM in order to highlight relevant values. Directly comparing human scanpaths
and model scanpaths would not be informative though, because there is too much
variability in the way a target is found. Therefore, we had to select high-level
variables which would be able to characterize such scanpaths.

Variables. We defined the following variables:

– number of fixations until target is found. This variable is an indication
of the difficulty participants had in finding the target;

– average angle between saccades. Humans tend to rationalize their scan-
paths in order to minimize their effort and this variable is able to characterize
the general shape of the scanpath. For instance, humans seldom show 180◦

angle (half-turn) between saccades.
– rate of progression saccades. Saccades could either be progression sac-

cades if the new fixation is closer to the target than was the previous fixation,
or regression saccades. This variable aims at characterizing the general be-
havior of our participants which is to go more or less quickly to the target.
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Discriminating power. One manner to investigate the power of these vari-
ables is to look at their ability to discriminate humans scanpaths with respect
to different conditions. We compared the average angle between saccades in the
semantic and non-semantic conditions. We found a statistical significant differ-
ence between these conditions using a Student test (p=.036). In the same way,
we compared the rate of progression saccades in the semantic condition only,
for the first 6 images the participants saw, for the next 6, and for the last 6.
There is indubitably a learning process occuring in the semantic condition of our
task because participants should realize after a while that words are semanti-
cally organized. We actually found that the rate of progression saccades is able
to capture the difference between the first images and the last ones (p<.001).
The number of fixations until the target is found is also different in the first 6
images seen and the last 6 (p<.02) Therefore, all variables seem good candidate
to compare human and model behaviors.

Fitting. We ran the model for 21 values of αV and 21 values of αM both
from 0 to 1. αS is directly obtained since αV + αS + αM = 1. To generate
several scanpaths per condition, we introduced a bit of noise in the model by
not choosing just the best-weighted word in the general map, but randomly
selecting between the best one and the second best one. We ran the model 20
times for each combination.

Before going into details in the results, let us discuss some extreme cases.

– If the visual weight αV is set to a very low value, the model is not dependent
on visual information and, more important, is not bound to stay in the local
area. The model therefore shows long saccades, sometimes going from one
side of the screen to the other.

– If the semantic weight αS is set to a very low value, the model does not take
into account semantic information: it seems to wander from word to word.
If the memory is set to a high value, it looks like an exploration behavior.

– If the memory weight αM is set to a very low value, the model tends to go
back to words it has just seen, or even continuously refixates the same word.

The only human data we kept for comparison with the model concerned the
semantic condition and, more, the only last 6 images each participant see in this
condition, to make sure the semantic organisation was understood by partici-
pants. We also removed some bad quality scanpaths. We ended up with a total
of 4085 fixations.

We computed the relative error δ of the model data with respect to the human
data for each variable and for each combination of αV , αS and αM . Figure 5a
displays the relative errors averaged over the three variables for all values of the
visual and memory weights. Values corresponding to minimum relative errors for
specific variables are marked F (number of fixations), A (angle between saccades)
and S (rate of progression saccades). Minimum errors and corresponding weights
are the following:

– number of fixations until target is found: δ = 0.0045 corresponding to
αV = 0.3, αS = 0.1, αM = 0.6;
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Fig. 5. (a) Average relative errors for all values of αV and αM (b) Saccades distribution
of human data and best model

– average angle between saccades2: δ = 0.0031 corresponding to αV =
0.25, αS = 0, αM = 0.75;

– rate of progression saccades: δ = 7.10−5 corresponding to αV = 0.35,
αS = 0, αM = 0.65;

All three variables give very similar results. Basically, memory plays the high-
est role. It requires a weight of 60 to 70% to best simulate humans. The visual
component needs about 30% and the semantic component plays a minor role in
our task.

To perform one more validation, we compared the human distribution of sac-
cades with the (αV = .30, αS = .10, αM = .60) model. Actually, a good cognitive
model of eye movements should exhibit a distribution of saccades close to the
human one. We found a pretty good fit (Fig. 5b) which is another evidence in
favor of the respective contributions we found.

5 Conclusion

This paper presents a threefold model of information seeking which was imple-
mented and tested on a word seeking task. We had to make several choices in
the design of the 3 components of the model but we tried to be as objective
as possible: the visual component is based on the decrease of visual acuity as a
function of eccentricity ; the semantic component is based on similarities pro-
duced by a cognitive model of semantic associations and the memory component
attempts to account for both inhibition of return and forgetting mechanisms. We
compared the model output with experimental data and found that the best fit
is obtained when the memory is given a strong weight and the semantic compo-
nent a low weight. This is obviously dependent on our material but we believe
that, after being tested on various tasks, this model could be used to predict the
2 We took the second best relative error for this variable since the best one corre-

spond to a non-relevant model with almost no memory and a extremely high level
of refixations from which the angle cannot be calculated most of the time.
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respective contributions of human visual, semantic and memory processes in a
given task. Much remains to be done to apply it to web pages and especially
towards more sophisticated visual maps which could be more related to saliency
maps. Our next work is to apply this model to images with slightly different
visual features but also to images with text paragraphs instead of just words.
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Abstract. We detail an approach to the autonomous acquisition of hi-
erarchical perception-action competences in which capabilities are boot-
strapped using an information-based saliency measure.

Our principle aim is hence to accelerate learning in embodied au-
tonomous agents by aggregating novel motor capabilities and their corre-
sponding perceptual representations using a subsumption-based strategy.
The method seeks to allocate affordance parameterizations according to
the current (possibly autonomously-determined) learning goal in a man-
ner that eliminates redundant percept-motor context, thereby obtaining
maximal parametric efficiency.

Experimental results within a simulated environment indicate that
doing so reduces the complexity of a multistage perception-action learn-
ing problem by several orders of magnitude.

Keywords: Perception-Action Architecture, Saliency, Subsumption Hi-
erarchy, Affordance.

1 Introduction

It is by now generally agreed (e.g. [1, 8, 19]) that traditional top-down sym-
bolic approaches to autonomous cognition exhibit significant, and previously
unforeseen, complexities. Within such approaches, the underlying mechanism
of cognition is assumed to be the manipulation of symbolic representations of
the environment via a computational system that utilizes pre-existing syntactic
protocols, such as predicate logic [5].

A critical issue for top-down strategies is consequently the implied disparity
between the twin processes of symbolic representation and symbolic manipu-
lation. One significant manifestation of this disparity is the problem of symbol
grounding identified by Harnad [9, 18] in relation to autonomous cognitive agents
(i.e. those expected to the exhibit some level of self-determination with regard
to their learning processes). Here, because relations between symbols are syn-
tactically constrained via a purely internal mechanism, any connection with the
outside world is of a potentially arbitrary and under-determined nature. Mech-
anisms for addressing this issue have hence typically attempted to constrain
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permissible representation via a priori sensorimotor linkages imposed at the de-
sign level [6, 7, 11, 22].

However, such approaches potentially limit the extent of possible represen-
tation, and run contrary to the ideal of cognitive autonomy. They also run the
risk of failing to address changes in the environment. Our ideal, in creating a
cognitive architecture, ought thus be to create an agent capable of spontaneously
generating abstract symbols simultaneously both representative of, and appro-
priate to, its surroundings [12], overcoming any potential epistemic circularity
implicit in this notion [24].

One such approach is to consider the problem within the terms of a perception-
action framework. In Granlund’s formulation [8] such an artificial cognition ar-
chitecture can be seen as constituting the principle that ‘actions precede per-
ceptions’ within the domain of exploration. Autonomous agents exploiting this
idea typically attempt to characterize the relationship between their actions and
the environmental changes brought about by those actions. In this way initially
random exploration of the agent’s motor domain can lead to a perceptual model
of the environment specified in terms of the affordances that it offers the agent
[13, 16, 17]. Critical to the success of this approach is the overcoming of the
classical artificial cognitive notion that environmental representation needs to
be fixed prior to the specification of action schemata. A great deal of represen-
tational redundancy can thereby by avoided.

In order to generate a cognitive architecture with comparable abstract pro-
cessing abilities to classical top-down architectures, it is possible to graft a sym-
bol processing system onto the percept-action learner in a manner consistent
with this ‘representationless’ action principle. However, in an ideal system, this
symbol processing ability would arise naturally in the context of the perception-
action framework.(Various approaches that that can be considered consistent
with this idea are set out in [4, 14, 20, 21]).

Our approach to achieving this ideal solution is via the notion of progressive
hierarchical perception-action reparameterization. In a logical, task-based con-
text such as learning the motor-manipulations required to solve a puzzle, the
acquisition of high-level action capabilities (such as the ability to move a puzzle-
piece into the solution-state) implicitly characterizes environmental affordance in
a symbolic fashion. Thus, if the perceptual representation of the environmental
affordance possibilities at the apex of a spontaneously-generated subsumption
hierarchy [3] can be efficiently reparameterized so as to remove perceptual con-
text irrelevant to that action capability, then a symbolic representation of the
environment is implicitly generated.

The learning strategy outlined in section 2 of this paper thus seeks to ac-
quire behavioral capabilities initially via the unsupervised identification of low-
level goals within the agent’s a priori percept-space, which are then correlated
with the action domain via randomized hill-climbing searches in the learning
agent’s motor space. For the current investigation, these goals are identified
via their information-theoretic saliency, in contrast to previous purely stochas-
tic approaches [23], such that a large amount of extraneous low-level context is
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eliminated at the outset (with the result that the final cognitive architecture so
constructed will constitute an information-based perception-action hierarchy).

Once acquired, such low-level abilities can then be concatenated and efficiently
reparameterized in order to eliminate perceptual invariance in a task-dependent
manner, and thereby generate novel perception-action capabilities. Thus, the
proposed mechanism can learn via observation of a supervisory agent, param-
eterizing inferred motor capabilities in terms of salient goals identified, such
that replication of both the supervisory agent’s perceptions and actions becomes
possible.

In this way, the perception-action hierarchy encompasses increasingly sym-
bolic manipulation by virtue of the autonomous sub-gaol specification implied
in the progressive reparameterization of the subsumption hierarchy so formed.
The implicit representation of the environment is thus of hierarchical set of af-
fordances.

Section 3 will thus constitute an experimental examination of the reparame-
terization methodology within the environment of a shape-sorter puzzle. Results
will demonstrate that the information-theoretic approach to perception-action
symbolic hierarchy generation is significantly more efficient than non-hierarchical
approaches, as well as being resilient to the presence of distractors. Section 4 will
conclude by summarizing experimental and theoretical findings.

2 Methodology

2.1 Acquisition of Primitive Percept-Motor Capabilities via
Information-Theoretic Saliency

We shall initially define the architecture in generic terms, assuming the existence
of an embodied agent capable of undertaking motor actions within the environ-
ment. It is further assumed that these actions may be reversed and repeated (so
as to permit exploratory and learning behaviors).

A priori motor capabilities in such an agent are defined via the set of in-
dependently controllable physical motors {C0, . . . , CK0}. However, a primitive
behavioral competence is configured in terms of a vector p that ranges over the
agent’s a priori perceptual space: ie, Cn = fn(p). Thus, the parameters in terms
of which the behavioral competences are defined are not explicitly motor pa-
rameters, but rather perceptual parameters. The corresponding a priori percep-
tual space is generic in nature, but will usually minimally consist of a topolog-
ical label space in order to permit labeling of entities that are invariant under
translation-like actions (thus enabling basic object-perception). p is hence typ-
ically a four-dimensional vector, encompassing the three ordinal directions and
a label indexing parameter.

In order to generate a primitive behavioral competence it necessary to map the
a priori motor capabilities onto the perceptual domain. This is achieved within
an initially unsupervised learning context via the identification of salient features
within the histogram of perceived features (ie the individual components of p)
that are generated by randomized exploratory actions. Behavioral competences
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Fig. 1. Single Feature histogram f(x) for 2 Object Environment

can then be indexed via these perceptual goals. Associated with these perceptual
goals are a particular set of perceptual parameters that are determined by their
synchronous behavior: that is, the individual feature peaks are determined to
have achieve similar levels of saliency by virtue of exceeding a particular thresh-
old (50% of the maximum). The extraneous components of p are thus eliminated
for each goal, and hence much low-level perceptual redundancy can be removed
in accordance with the ‘action precede perception’ principle. Feature difference
histograms are also calculated to capture behavioral competences that are of
an explicitly relative character (for instance, the act of aligning one object with
another), thus effectively doubling the a priori percept-space dimensionality.

Perceptual saliency is determined along the scale-based lines specified in [10],
rendering the hierarchical perception-action reparameterization implementation
an implicitly information-theoretic one. The scale-saliency approach enables
identification of salient features in the perceptual space in a manner resilient
to shift/scale changes and to noise; it naturally favors isotropy and geometrical
unpredictability, and is consequently suited to extraction of parametric percept
elements at the most appropriate scale. We might thus plausibly expect it to
favor the characteristics typically attributable to sub-goal and solution states
within puzzle environments, such as the identification of key movable objects in
a scene, and the identification of the conditions under which these integrate with
other geometrically-matching entities. The procedure for obtaining perceptual
goals, on obtaining a feature histogram f(x) (such as that given in figure 1 for
exploration of a 2D scene with 2 object attractors) is thus to:

(a) Calculate the Shannon entropy HD(s, x) of local attributes of all points, x
of the feature space in question over a range of scales s;



An Entropy-Based Approach to the Hierarchical Acquisition 83

HD(s, x) = −
∫

p(i, s, x) log p(i, s, x) di (1)

where i is a particular feature-value within the radius s centered on x.
(cf figure 2)

Fig. 2. Shannon Entropy HD(s, x) at Differing Feature-Space Scales

(b) Select scales at which the entropy over the scale function exhibits a peak,
sp: ie where HD(s, x) >threshold or where d[HD(s, x)]/ds = 0

(c) Calculate the magnitude change of the PDF as a function of scale at each
peak, WD(s, x):

WD(s, x) = (s2/[2s − 1]) ×
∫

(d[p(i, s, x)]/ds) di (2)

(cf figure 3)
This is essentially a measure of scale self-dissimilarity.

(d) The final saliency, S, is then the product HD(s, x).WD(s, x) at each peak.
(S is given for the whole scale-feature space in figure 4 to indicate the isolation

of peak components)

Suppose, then, that we have obtained a set of perceptual goals that we wish to
map onto the motor domain. We select a particular goal g defined by the context-
free feature vector: f = (fg

1 , . . . , fg
v ). The distance between the perceptual goal

and the current state f̃ is the Euclidean distance; D(f , f̃) = [
∑v

i=1(f
g
i − f̃i)2]

1
2 .

Stochastic gradient descent via the method of [15] then enables minimization of
this quantity over a number of random instantiations and permutations of the
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Fig. 3. Magnitude Change in PDF Over Entire Feature Space

Fig. 4. Saliency S For Differing Sales (s)

motor parameter-space, thereby providing a (partially) context-free mapping
between perceptual goals and the agent’s action space. (Note that the method
[15] finds a global minimum for all components of p simultaneously, rather than
considering the motor parameters independently).

Crucially, this method for indexing action capabilities via the perceptual
domain can be iteratively generalized to enable construction of the paramet-
ric perception-action hierarchy. To do this we consider arbitrary concatena-
tions of behavioral competences with an appropriate pruning strategy for non-
contributory chains. Thus, if after carrying out the behavioral sequence;

C(p) = Cr1(pr1
), Cr2(pr2

), . . . , Crm(prm
) (3)

the goal distance Di = D(f̃ (i), f (i)) does not itself exhibit change for a ran-
dom parametric instantiation i, then a new sequence is generated. If, on the
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contrary Di �= Di+1, then the sequence is deemed relevant, and the gradient
descent procedure continued. If Di = 0 at any stage we thus obtain a new
behavioral competence CrK0+1(prK0+1

) where prK0+1
has a perceptual feature

domain given by the tensor product:

prK0+1
= pr1

⊗ pr2
⊗ · · · ⊗ prm

(4)
= (fg1

r1
⊗ · · · ⊗ fgv

r1
) ⊗

(fg1
r2

⊗ · · · ⊗ fgv
r2

) ⊗
. . .

(fg1
rm

⊗ · · · ⊗ fgv
rm

)

Such novel behavioral competences can then in principle be added to existing
body of behavioral competences in an iterative manner. The subsumptive nature
of the competences so formed implies a hierarchical arrangement of behavioral
competences. We will later demonstrate that when such a hierarchy is formed
within a supervised puzzle-based environment, this hierarchy naturally reflects
the percept-motor sub-goals implicit within the scenario.

Furthermore, in typical operational scenarios, the concatenation C(p) has
the potential to be efficiently reparameterized (reflecting the fact that goal sub-
tasks are not typically independent of each other). It is this property that is
key enabling the hierarchical redefinition of the perceptual domain in a manner
consistent with the notion of defining the environment in terms of the affordances
it offers the active agent.

Parametric Generalization of Behavioral Competences. At the action-
level, parametric generalization seeks to make behavioral competences both in-
variant to environmental configuration and maximally efficient (in the sense of
involving no extraneous actions). At the percept level, on the other hand, para-
metric generalization aims to reorganize the perceptual space associated with
behavioral competences in order to define the minimal number of perceptual
parameters associated with it. It achieves this by eliminating constant or de-
rived parameter values, and by reindexing multi-dimensional goal parameters
into single vectors (if sufficiently few in number).

The former process may be illustrated via an example deriving from the ex-
perimental scenario of Section 3: a robotic manipulator-arm equipped with a
gripper in a 2D shape-sorter puzzle environment. Suppose, therefore, that there
currently exists just three behavioral capabilities; moving the manipulator-arm
from any given initial position to (x, y); aligning the manipulator-arm with an
object indexed by the parameter n; and the act of closing the gripper on an ob-
ject within its grasp. These are respectively designated M(x, y), A(n), and G(s)
(the latter parameter s = [′grasp′,′ ungrasp′] encompasses the binary states of
the gripper).

A typical (potentially autonomously-derived) sub-task in learning the overall
puzzle competence is the acquisition of the ability to move an entity with index



86 D. Windridge, M. Shevchenko, and J. Kittler

n to a 2D location (x, y). Suppose that a redundancy-free sequence of previous
capabilities has already been established that is capable of achieving this:

A(n1), G(s1), M(x1, y1), G(s2).

By the tensor product formulation of Equation 4, this implies a perceptual
feature domain ranged-over by the vector: (n1, s1, x1, y1, s2). However, it is ap-
parent that only three of these features, (n, x, y), function as parametric variables
within the act of moving an entity n to the location (x, y); the variables s1 and
s2 are always set to constant values; s1 = ′grasp′, s2 = ′ungrasp′. It is conse-
quently not necessary to (externally) designate them as parameters within the
behavioral competence ‘moving an entity n to the location (x, y)’. Such variable
constancy can always be straight-forwardly determined via sequential random
instantiation of parameters.

We are thus able to remap the perceptual space prK0+1
of novel behavioral

competence CrK0+1(prK0+1
) (ie ‘place object n at (x, y)’ ) onto a parametri-

cally smaller perceptual domain prK0+1
→ p′

rK0+1
, where |prK0+1

| = 5 and
|p′

rK0+1
| = 3. Furthermore, if there is any redundancy within the randomly-

generated sequence (for instance, if we had obtained an inefficient, but goal-
equivalent sequence;

G(s1), G(s2), A(n1), G(s3), M(x1, y1), G(s4),

with spurious initial grasping movements G(s1), G(s2)), then a similar reduc-
tion may be achieved by randomly instantiating random parameter subsets and
removing any unnecessary ones. Equally, this procedure can establish whether
there exist functionally identical variables (such as, for instance, when a spatial
parameter X1 requires the same input as a second, apparently differing, instanti-
ation of a singular spatial variable; X2). Thus, the previous random instantiation
procedure enables dimensionality reducing projections of the form (X1, X2) →
X1 (although only for variables of the same type - eg spatial ordinates).

The second major procedure for reduction of the parameter space dimen-
sionality of acquired behavioral competences involves establishing whether con-
catenated feature-spaces produce a feature histogram in which only a subset
of features grow synchronously during trials (measured via the indicated scale-
saliency formulation). In this case, the parameter space can be appropriately
reduced. An example of this occurs in the experimental scenario of section 3
when the competence ‘put object into hole’ is learned. In this case, the apparent
parameter space, (n, x, y), (consisting in an index n and a hole-location (x, y))
can in fact be reduced to a single parameter n because of the unique (but not
a priori deducible) correspondence between objects and holes established via
exploratory trails, or via observing the supervisor. Similarly, the final, top-level
competence ‘solve the puzzle’ is concatenated from all the instantiations of the
sub-competence ‘put object n into corresponding hole’. However, the top-level
competence is order independent, and the final state (being identical for any
initial configuration) does not depend upon the object labels; in fact this has no
parameters at all.
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3 Experimental Results

We aim, in the following experimental test, to ascertain the relative performance
of an agent implementing hierarchical information-theoretic perception-action
learning in relation to that of a non-hierarchical learner.

The experimental scenario consists in a computer-simulated robotic
manipulator-arm equipped with a gripper capable of manipulating a 2D shape-
sorter puzzle environment. In this environment, there exist four shapes with
corresponding holes into which they may be placed if correctly orientated. The
four shapes are otherwise free to occupy the 2D surface, and can be stacked
on top of each other. The shape centroids and orientations are randomly in-
stantiated at the start of each game (ie following successful completion of the
preceding game).

Solution states for the puzzle are characterized by all pieces being in their
corresponding holes. The independent a priori motor capabilities available to
the agent are: Translation of the gripping arm to an arbitrary location (x, y);
Grasping and ungrasping of the gripper; Orientation of entities within the gripper
to a given absolute value with respect to some fixed reference. The first and
last capabilities’ motor parameter spaces are continuous; the gripper grasping
space is binary in nature. (The binary grasping mechanism might correspond
to an automated fine-control perception-action sub-process within a real-word
implementation). The a priori motor parameter-space is consequently of scope
s ⊗ x ⊗ y ⊗ θ, where s ∈ {0, 1}, x ∈ [0, 1), y ∈ [0, 1) and θ ∈ [0, 2π].

The a priori perceptual parameter-space ranges over s⊗x⊗y⊗θ⊗n⊗h where
x, y and θ are the spatial and orientational ordinates associated with the entity n
of type h. n is thus an index that differentiates entities (presumably distinguished
via sets of individual characteristics such as shape, texture or color in a real-world
implementation) of type h. h is thus a coarser-grained class attribution generated
on the basis of the previous characteristics via either supervised or unsupervised
pattern recognition. In the simulated environment, we assume that entities are
separated into pieces and holes on the basis of these characteristics (perhaps by
the differing shading characteristics of raised and sunken entities, respectively).
However, it is not yet the case that the distinction between pieces and holes has
any semantic content; this is what we aim to accomplish with the entropy-based
hierarchical perception-action reparameterization.

Initial determination of the primitive behavioral goals is accomplished via the
scale-saliency algorithm, followed by gradient descent in the motor parameter
space. Distractor entities are included in the perceptual domain (ie they have an
index n and corresponding x, y and θ values), but which cannot be moved be
the gripper arm (ie they are ‘glued’ to the table). In order to permit maximum
generalizability, these are assumed to be visibly distinguishable from pieces and
holes, and so have a different type allocation, hd.

A human supervisor is observed solving the puzzle over a large number O(103)
of trials conducted via a ‘drag and drop’ mouse interface. The solution involves
four principle stages of motor-competence (given the initial motor parameter
space), which are given an explicit emphasis during training, by emphasizing
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Fig. 5. Relative Performance of Hierarchical (red) and Non-hierarchical (blue) P-A
Learning Agents (n = number of P-A cycles)

their sequentially-applied nature. (i.e., the supervisor is instructed not to per-
form continuous composite movements during training, much as when training
a human child). Other than this, no a priori knowledge is given to the system.
The four key stages of competence are; Moving the gripper to, and aligning it
with a given object; Moving a given object to a specified location, Inserting a
given object into the appropriate hole, Solving the shape-sorter puzzle.

It is apparent that these competences form a subsumption hierarchy, with
each level critically dependent on the level immediately beneath it. Each of
the stages consequently requires a progressively complex concatenation of the
primitive motor capabilities. Under normal circumstances, it would therefore
be the case that the hierarchy of competences would have associated with it a
progressively complex perceptual domain (at the first stage, the system observes
oriented entities; at the second-stage, the system observes movable objects; at
the third stage the system observes puzzle pieces; at the final stage the system
simply observes a puzzle). Without a modification of the perceptual parameter
spaces, the key perceptual entities at each stage would require highly complex
description in terms of the a priori parameters.

The saliency-based perceptual-action hierarchy formation mechanism should
therefore be able to identify these stages of behavioral competence autonomously,
and make the appropriate modification to the perceptual space at each level of
the hierarchy. In doing so, we expect that it will significantly reduce the pa-
rameter space associated with exploratory moves (which are defined at the apex
of the hierarchy, and transmitted down the perception-action hierarchy, acquir-
ing increasing amounts of perceptual context as the sub-goals are progressively
defined).
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Fig. 6. Single Feature Perceptual Goals for the Competence ‘moving from A to B’

Fig. 7. Single Feature Perceptual Goals for the Competence ‘Aligning with an Object’

Fig. 8. Single Feature Perceptual Goals for the Competence ‘Moving an Object’ (5
Objects in Scene)
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Fig. 9. Single Feature Perceptual Goals for the Competence ‘Filling a Hole’ (5 Holes
in Scene)

Fig. 10. Single Feature Perceptual Goals for the Competence ‘Solving the Puzzle’

To demonstrate this, we establish the total number of perception-action cycles
required to achieve the various stages of competence for both a hierarchical
learner, and a similar saliency-based perception-action learner, albeit without
perceptual reparameterization capability. These results are outlined in figure 5.

We also indicate in figures 6 to 20 typical perceptual goals identified by the
scale-saliency mechanism for a single spatial feature at each stage of the hi-
erarchy. In each case, it is apparent that well-defined and relevant perceptual
parameters are isolated by the algorithm.

4 Conclusions

We have presented a novel scale-saliency based technique for building perception-
action hierarchies. The mechanism is contiguous over the entire hierarchy, and
aims to identify both salient parameter sets and parameter indices within the
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perceptual domain. This enables an affordance-based characterization of the
environment in which higher levels of the perception-action hierarchy repre-
sent increasingly task-specific and de-contextualized sensorimotor competences.
Equivalently, this constitutes a mechanism for autonomous nesting and schedul-
ing of sub-goals; in essence a subsumption hierarchy in the manner of Brooks
[2], although constructed spontaneously according to the task requirements.

It is evident from figure 5 that the autonomous generation of an entropy-based
saliency hierarchy has the further advantage of significantly more efficient learn-
ing than non-reparameterizing methodologies. In fact, it exhibits an essentially
linear scaling in performance over the task-complexity hierarchy (similar to an
earlier stochastic approach to autonomous construction of perception-action hi-
erarchies [23]). Here, however, the perceptual goals are far more clearly defined
for both the primitive and derived capabilities. The method is also significantly
resilient to the presence of distractors.
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2013) under grant agreement no 215078.
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Abstract. Flexibility and adaptability are desirable features of cogni-
tive technical systems. However, in comparison to humans, the develop-
ment of these features for technical systems is still at the beginning. One
approach to improve their realization is to study human cognitive pro-
cesses and to develop appropriate algorithms, which can be transferred
and implemented into technical systems. One example for a typical task
common to humans and robots is to find a specific task-relevant object
(or target) among other similar but task-irrelevant objects (or distrac-
tors). Although this task is quite demanding, humans are doing well in
finding task-relevant objects even in unknown environments by applying
specific search strategies. For example, when an object is located in a fa-
miliar rather than in a new context, humans use the context information
to localize the object without recognizing the context as familiar. This
phenomenon is known as contextual cueing : it is supposed that implicitly
learned context information of the environment, i.e. the spatial layout of
objects and their relations, guides visual-spatial attention to the target
location and thus helps to localize the task-relevant object.

However, in most of the previous psychological studies, artificial ob-
jects were used to investigate this effect and thus the ecologic validity is
at least dubious. Therefore, the study reported here uses natural objects
(LEGOR© bricks). In contrast to artificial objects, natural objects are not
only different in their visual features but also in their action relevance.
Visual search is found to be faster and more accurate when the target is
presented within a familiar context and when the knowledge about the
context is implicit. This result is encouraging for further adaptation of
stimulus material as well as for transferring psychological knowledge to
technical applications.

Keywords: Cognitive systems, contextual cueing, learning, perception,
visual attention.

1 Introduction

Up to date, intelligent behavior of cognitive technical systems is restricted to
functions of rather moderate complexity and to contexts which do not signifi-
cantly differ from those considered explicitly during the design of the planning
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components of the system. Cognitive systems need the ability to reason, plan,
solve problems, think abstractly, comprehend complex ideas, and to learn quickly
from experience in addition to perceiving their environments and carrying out
actions. While cognitive technical systems are still limited in many respects,
human visual processing is extremely powerful. For example, humans can rec-
ognize an object or an animal within complex scenes with a single glimpse [1].
Thus, one logically reasonable approach to improve the adaptability of technical
systems is to study human behavior. Investigating human cognitive processes,
modeling and transferring theses mechanisms to technical systems may improve
their ability to adapt their behavior to changing environments.

One common but also difficult visual task is to find a task-relevant object
(or target) among other similar but task-irrelevant objects (or distractors), e.g.
looking for a friend in a crowd or trying to find a car on a parking lot. The human
visual system has limited capacity, i.e. not all complex objects can be processed
simultaneously. Thus, the system has to select information for more detailed
processing by the mechanism known as selective attention. The human visual
system developed various strategies to perform search tasks quite efficient. On
the one side, the physical properties of the target object and their dissimilarity to
other objects in the scene provide relevant information for target selection. These
so-called bottom-up mechanisms, such as local feature contrast [2, 3], or abrupt
onsets [4] guide the deployment of attention. But also top-down, knowledge-
based factors, such as novelty [5], familiarity [6] and expectancy [7, 8], influence
the guidance of attention. Knowledge on a scene and the relevant information
in it can either be given explicitly, e.g. via instruction, or it may be acquired
implicitly over time. While explicit mechanisms require additional resources –
i.e. the instruction has to be encoded, actively stored and retrieved from working
memory – implicit learning mechanisms allow the visual system to quickly ex-
tract stimulus regularities [9]. Examples are the repetition of a target’s color or
location [10, 11], a repeated sequence of target locations [12], or the set of other
objects within which the target is presented [13]. The implicit learning requires
almost no additional costs, i.e. it does not recur on limited memory resources.

Psychological research has intensively investigated the role of attention in se-
lecting visual information. One main issue is that most of these psychological
experiments were performed under laboratory conditions using mostly artificial
stimulus material. Recent experiments, however, showed that humans may even
perform better when more natural stimuli are used, since far less attention is
needed when observers have to process natural scenes rather than artificial stim-
ulus material [14]. In real-world, objects occur in a relatively constant spatial
relationship to each other. A stable, meaningful scene structure may thus be used
to help guide visual attention to behaviorally relevant targets and may serve to
constrain visual processing. Global properties of an image can prioritize objects
and regions in complex scenes for selection, recognition, and control of action.
This effect is known as contextual cueing. In a series of studies Chun and Jiang
[13, 15, 16] have demonstrated that the search for a target object was faster
when it was embedded in an invariant configuration.
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2 Contextual Cueing Experiments with Natural Stimuli

In contextual cueing experiments, participants search through a display of ob-
jects in order to find and identify a target object. The visual context, as pre-
viously described as the spatial relationship between objects, is defined by the
spatial arrangement of the distractor objects. In order to investigate the effects
of context, some of the search displays are repeated across blocks throughout
the entire experimental session. Because the relationship between the objects is
held constant, the context predicts the target location (but not the identity of
the target). In a respective control condition, new displays, which are randomly
generated for every trial in each block, are presented intermingled with old con-
text displays. Although reaction times (RTs) decrease for both old and new
contexts during the time course, there is an additional learning effect that dif-
fers for old and new contexts. After four to five repetitions, RTs in the repeated
context conditions become faster than RTs in the newly generated context con-
ditions, even though participants were not told explicitly that the global context
structure was informative. Probably, an association between the spatial arrange-
ment of the distractors (or context elements) and the target location was formed
and is subsequently used to guide visual-spatial attention to the target location
(context learning). Interestingly, contextual knowledge is acquired through im-
plicit learning processes. In contrast to explicit learning, which is characterized
as an active process where people seek out the structure of any information
that is presented to them, implicit learning is a passive process by which com-
plex information about the stimulus environment is acquired without intention
(i.e., learning occurs incidentally, simply by the exposure to the information) or
awareness [15].

It is important to note here that learning (how knowledge is acquired) and
memory (how knowledge is stored) are distinct processes [17]. Thus, implicit
learning can produce explicit knowledge, and certain forms of explicitly learned
information are only accessible through implicit measures. Which kind of knowl-
edge (implicit or explicit) is acquired can be tested by so-called implicit and
explicit tests of memory. For example, after a learning phase, participants are
presented with a list of previously seen and new objects and asked to catego-
rize them as old or new (recognition test). This is a direct test of which objects
have been learned (explicit knowledge). Implicit measures, on the other side, do
not require the participants to remember any information. The effect of learning
is expressed by a faster and/or more accurate response to old relative to new
objects (implicit knowledge).

In typical contextual cueing experiments, the context information is implicit.
That is, participants are usually not aware of the fact that some of the contexts
were repeatedly shown. This was measured by a so-called forced-choice recogni-
tion test, in which participants had to categorize old and new displays as already
seen or new. If the knowledge about previously seen contexts is implicit, partic-
ipants are not able to distinguish between both display types; what is basically
the findings in such procedures.
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Investigating how this implicit memory-based mechanism works may allow
to implement similar principles in cognitive technical systems for improve their
adaptivity to changing contexts. However, existing results on implicit context
representations were obtained by using rather artificial stimulus material, e.g.
the rotated letters T and L [15, 18], while cognitive technical systems should
act in real-world scenarios. It is difficult to predict whether a simple transfer of
the results would be possible, i.e. additional experiments were required to test
whether context information can be used to guide attention also in real-world
scenes.

To adapt the artificial contextual cueing paradigm to real-world scenarios,
there are three possible strategies: the context, the objects, or both could be
changed from artificial to natural. So far, only a few studies have addressed this
issue [19, 20]. In these studies either only the context was changed (a natural
scene, in which a T or L had to be found [20]) or also the target object was
replaced by a natural object [19]. Although the contextual cueing effect was
still present, the former implicit knowledge about the association of context and
target position found in previous experiments became explicit. This means that
the participants noticed the repetition of some displays and were able to correctly
categorize displays as being old or new. This switch from implicit to explicit
knowledge may be due to a better recognition of natural scenes in contrast
to artificial object arrangements. However, also a decreased number of scenes
used in these experiments may account for the effect, as the reduction in scenes
may have increased the probability of recognition. In any case, although the
knowledge became explicit, the learning was still incidental: participant’s were
neither instructed to encode the context nor were they told that the context
would provide any relevant information.

The goal of the experiments reported in this investigation was to design a
paradigm, which allows to replicate the contextual cueing effect on the one side
and to keep the learning process implicit on the other side. Therefore, the ’classi-
cal’ paradigm, in which context is defined by the layout of distractors, is modified
by replacing artificial line-object context elements by natural objects. Natural
objects differ from artificial objects not only by their visual features, such as the
spectrum of colors, contours, or luminance. More important, perceiving natu-
ral objects also activates object-specific action goals [21, 22, 23]. For example,
perceiving a tool, like a hammer, also activates possible actions, like using it
to drive a nail into the wall. That is, natural objects probably require more
cognitive capacity to be processed. Besides the perceptual analysis, additional
cognitive processes (e.g., forming an intention for action or action planing) have
to take place. Thus, asking whether contextual cueing effects are affected by the
stimulus type (articial vs. natural) is not trivial. Although it is known that im-
plicit learning needs less attentional resources than explicit learning, additional
cognitive processes may reduce implicit learning speed.

The approach of using natural objects, as presented here, is also interesting
for application to technical systems. For example, robots are often required to
find a task-relevant object among task-irrelevant objects, such as specific tools
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or components. In this case not the whole background provides context informa-
tion, as was investigated by the real-world studies cited above, but rather the
arrangement of tools and components.

3 Methods

3.1 Participants

Sixteen paid volunteers (14 women, 2 men, aged between 19 and 29 years, mean
age 22.6 years) participated in the experiment. Three participants were left
handed, all others right handed. All participants reported normal or corrected-
to-normal visual acuity. The study was carried out in accordance with the ethical
standards laid down in the 1964 Declaration of Helsinki.

3.2 Stimuli and Apparatus

Participants were seated in a comfortable armchair in a dimly lit and sound
attenuated room with response buttons located under their left and right index
fingers. All stimuli were presented on a 17 inch computer screen placed 100 cm
in front of the participants at the center of their field of vision. Participants
were instructed to search for one of two task-relevant objects (the target) among
other task-irrelevant objects (the distractors) and identify the target by pressing
a response key.

In Fig. 1, a sample search array (left) and an enlarged object (right) are
shown. Each search array consisted of 12 LEGO R© objects (1.2 ◦ in visual angle),
which could appear within an invisible matrix of 12 x 9 locations that subtended

Fig. 1. Example of a search array (left). Each object was constructed by 2 LEGOR©

bricks (right). The task-relevant object (or target) was a rotated T, the task-irrelevant
objects (or distractors) were rotated L objects. All objects were presented in red on
a light blue background. The target could appear at one of the marked locations (not
visible in the actual experiment).
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approximately 15.1 x 10.2 ◦ in visual angle. The objects were designed by a CAD
program (LegoCad). The software, which was developed by Lego in cooperation
with Autodesk, allows constructing simple 3D models and machines. Two red
LEGO R© bricks were used to build one object. To make the stimulus set more
realistic they were additionally rotated in perspective so that they appeared to lie
on a surface. Using these objects was a compromise between constructing natural
objects on the one side and keeping the objects comparable to the artificial
objects, which were usually used in contextual cueing experiments on the other
side. Thus, although our objects were still similar to previous experiments, which
presented a rotated T among a set of rotated L, they were also action relevant.
In contrast to abstract letters, LEGO R© bricks can be grasped, moved around
and used to assembly a more complex object.

In the experiment, the target was a LEGO R© object in the form of a T, rotated
90 ◦ to the right or left. The target was presented at one of 16 selected locations
of the 12 x 9 matrix, and the target positions were identical for all participants
(cf. Fig. 1). Each of these 16 locations was used once in old and once in new
configurations. The task-irrelevant objects (or distracting context elements) were
11 L-shaped LEGO R© objects, which were presented randomly in one of four
rotations (0 ◦, 90 ◦, 180 ◦, 270 ◦). The distractor locations in each configuration
were randomly sampled from all 108 possible locations, including target locations
used in other configurations. In each configuration, half of the objects were placed
left and the other half right of fixation, balanced for eccentricity. Configurations
were generated separately for each participant.

Similar to previous experiments, the visual context was defined as the arrange-
ment of distractor objects. In order to measure the influence of context, old and
new configurations were presented throughout the experiment. The old set of
stimuli consisted of 16 configurations, randomly generated at the beginning of
the experiment then repeated throughout the entire experimental session once
per block. In the repeated configuration condition, the target (left- or rightward
oriented) always appeared in the same location within any particular configura-
tion and the identities of the distractors within their respective spatial locations
were preserved. The target type (left- or rightward pointing T), however, was
randomly chosen so that the identity of the target did not correlate with any
of the configurations. In contrast, in the new set of stimuli configurations of
distracting context elements were generated randomly on each trial. The differ-
ences of RT between old and new configurations can be interpreted as the effect
of contextual learning.

3.3 Procedure

Participants performed three different parts: training at the beginning of the
experiment, followed by the actual experiment, and a recognition test at the
end. Participants were instructed to search for a rotated T and press one of
two buttons corresponding to whether the bottom of the T pointed to the right
or to the left as soon as they could. They performed three training blocks of
32 trials each. A trial started with a fixation cross appearing in the middle of
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the screen for 500 msec, followed by the search display that was presented for
further 500 msec. Participants pressed a key to indicate the identity of the target
(a left- or rightward pointing T ). After a brief pause of 1-2 sec, the following
trial was initiated by the computer. The training was necessary to familiarize
participants with the experimental task and procedure and to minimize inter-
subject variability.

The experimental session consisted of 30 blocks of 32 trials each (16 old, 16 new
configurations), for a total of 960 trials for each participant. The experimental
procedure was exactly the same as in the previous training session. Feedback was
given at the end of the block on the percentage of correct responses. Participants
were not informed that the spatial configuration of the stimuli in some trials
would be repeated, nor were they told to attend to or encode the global array.
They were simply given instruction to respond to the target’s identity. It was
stressed that they were to respond as quickly and as accurately as possible. A
mandatory break of about 1-2 minutes was inserted after five blocks each and a
longer break after half of the experiment.

At the end of the final block, participants performed a recognition task. All 16
old configurations were presented again, intermingled with 16 newly generated
configurations. Participants were asked to classify all configurations as already
seen or new, respectively. The recognition served as a control measure: If learning
was indeed implicit, participants should not be able to distinguish between old
and new displays.

3.4 Data Analysis

Reaction times were measured as the time between onset of the search display
and the participant’s response. Pressing the wrong button, pressing the button
too quickly (<150 msec) and pressing it too slowly (>2000 msec) were defined as
errors. To estimate the general learning effect and the time point when context
learning occurred, blocks were grouped in sets of 6 blocks each into 5 epochs.
Error percentages and mean reaction times, separately for correct and incorrect
responses, were entered in separate repeated-measures ANOVAs with factors of
context (old vs. new configurations), and epoch (1 to 5). An effect of epoch
would reflect changing RTs (or errors) in the time course of the experiment (i.e.
general learning), whereas a statistical effect of context would reflect how the
repetition of a context affected the search for the target object (i.e. contextual
learning). More important, an interaction between both factors would suggest
that there was no general difference in visual processing of old and new displays
but that the context information was learned over time. In order to demon-
strate that the knowledge of display repetition is indeed implicit, a recognition
test was performed at the end of the experiment. The hit rate (old displays
were correctly categorized as old) was compared to the false alarms rate (new
displays were wrongly categorized as old) by a paired t-test. Additionally, the ef-
fect of a possible recognition of context repetition on the contextual cueing effect
was estimated by a correlation between d-prime as measurement of recognition
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(according to signal detection theory) and the contextual cueing effect reflected
by RT differences between old and new contexts (RTnew − RTold).

4 Experimental Results

Error percentages and reaction time data are presented as a function of epoch
and context in Fig. 2. With about 20.9%, error rate was relatively high in this
experiment (Fig. 2, left panel). In the course of the experiment, the participants’
accuracy increased, as shown by decreasing errors from about 26.8% in epoch 1
to 18.1% in epoch 5 (F (4, 60) = 17.5, p < 0.001). Planned comparisons revealed
a significant decrease from epoch 1 to epoch 2 (F (1, 15) = 15.9, p < 0.01),
and from epoch 2 to epoch 3 (F (1, 15) = 5.0, p < 0.05). The error rates than
remained constant on this level, with F (1, 15) < 1. Error rates also varied as a
function of context: F (1, 15) = 11.7, p < 0.01. Searching for a target in an old
context was on average more accurate than searching in a new context (22.2% vs.
19.5%). However, a significant interaction between epoch and context (F (4, 60) =
2.6, p < 0.05), indicates that this advantage developed during the course of
the experiment, i.e. an old context had to be learned as being known first.
Probably only some of the repeated old displays were learned from block to
block, as reflected by a reliable linear trend (F (1, 15) = 5.5, p < 0.05. Similarly
to error rates, the RT of correct responses decreased over time: F (4, 60) = 6.0,
p < 0.01, ε = 0.561 (Fig. 2, right panel). Single planned comparison showed a
reliable linear trend in search time: F (1, 15) = 9.0, p < 0.01. The contextual
cueing effect, defined as an RT benefit in the old condition compared to the
new condition across all epochs, was significant: F (1, 15) = 19.8, p < 0.001. The
significant interaction between epoch and context (F (4, 60) = 3.8, p < 0.01)

Fig. 2. Error rates (left panel; % error and SEM) and reaction times (right panel; RT
and SEM) as a function of epoch (x-axis) and context (filled vs. unfilled symbols).
Reaction times were further analyzed separately for correct and incorrect responses
(circles vs. triangles).
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indicates that performance was similar for both context types at the beginning
of the experiment but that learning of the old context led to faster reaction
times for the latter when compared to new contexts. The overall contextual
cueing benefit, measured as the difference between old and new configurations
across the last three epochs (according to [24]) was 38 msec (SD=29 msec). In
contrast to correct responses, the RT of incorrect responses neither varied as a
function of epoch or context nor did both factors interact with each other (for
all tests F < 1). Similarly to previous studies, the knowledge about repeated
configurations was implicit. In the recognition test, the hit rate (42%) did not
differ significantly from the false alarms rate (36%): t(15) = 1.2, p = 0.248.
Additionally, d-prime as measurement of recognition did not correlate with the
size of the contextual cueing effect (r = 0.29, p = 0.28), showing that there was
no relation between a possible explicit knowledge about the configurations and
the size of the contextual cueing effect.

5 Contextual Cueing Effects with Natural Stimuli

The aim of the present study was to investigate whether knowledge acquired with
artificial stimuli in laboratory environments can also be obtained by more natural
objects and may be transferable to real-world scenarios developed for technical
systems. Artificial and natural objects do not only differ in their visual features
but also in their action relevance. According to this view, which is different
from the classic information processing view, perception and action are not seen
as functionally distinguishable stages, but as intimately related processes [23].
Recently, brain studies have shown that perceiving natural objects not only
activates visual cortical areas but also motor-related areas, which was not the
case for non-manipulable abstract stimuli [25].

Similarly to previous experiments [13, 15, 16], we observed two learning pro-
cesses in the current experiment. First, generally decreasing RTs in both context
conditions reflects a general learning process. And second, finding a target in an
old (repeated) context is faster than finding the target in a new context (context
learning). The first learning effect is probably due to different underlying cogni-
tive processes, e.g. the familiarization with the task and stimulus material and
general training effects in response selection. This interpretation is supported by
electrophysiological findings [26].

The second learning effect is often interpreted as guidance of visual attention
by the context [13, 15, 16]. In the present type of contextual cueing experiments,
observers have to first find the target in the display set of elements and then
to identify the target’s identity. This task requires the observer to focus her/his
attention on the target location. Although the target identity differed in all trials
and in all context conditions, the arrangement of the distractors and the target
location were kept constant in the old context condition. Observers may thus
have used the repetition of the spatial layout in the old context conditions to
predict the target location. As this prediction did not include the target iden-
tity that was needed for appropriate responding, they still had to allocate their
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attention to the target location. According to these considerations, faster RTs in
the old context condition reflect a faster shift of attention to the target location:
or, in other words, the ’familiar’ visual context guided visual-spatial attention.
Electrophysiological experiments support this interpretation [18, 26, 27].

More interestingly, the results presented here demonstrate that context learn-
ing does not only occur when artificial stimuli are used but can also be obtained
with natural objects in a very similar manner: Searching for a task-relevant ob-
ject among task-irrelevant objects was faster and more accurate when the object
was presented within a known context. Obviously, the larger visual complex-
ity of natural objects in comparison to simple artificial ones did not influence
the learning process per se. Also, probable additional cognitive processes, e.g.
intentions or action planing, did not interfer with learning.

In contrast to previous experiments using real-world scenes [19, 20], the knowl-
edge about the context was still implicit in our experiment: participants could
not distinguish between already inspected and newly generated displays. One
reason might be that in our experiment, similar to artificial stimuli, it was still
the arrangement of the context elements that defined the visual context. In this
case, the stimulus type (artificial versus natural) does not play a role. If the global
context, however, may have a meaning on its own, as is the case in real-world
scenes, it seems to be processed in a different way and to get access to explicit
memory. The information provided by the arrangement of some few context ob-
ject elements, however, is probably too abstract to be explicitly accessible from
memory. One argument which would favor this interpretation is that learning
takes longer in experiments using artificial stimuli, namely about 5 repetitions
[15], whereas already the first repetition of a real-world scene produces large
contextual cueing effects [20]. Probably, meaningful contexts are easier to dis-
tinguish and to categorize, what facilitates learning. In summary, although the
global context is a source of complexity and adds to the segmentation problem in
vision, contextual cueing experiments show how context also serves to facilitate
processing rather than just complicating it. The present findings highlight the
important role of implicit learning and memory mechanisms in visual processing.

6 Contextual Cueing in Cognitive Technical Systems

From an engineering perspective, the interesting question is how the principles of
contextual cueing and learning can be employed to improve the perceptual and
cognitive abilities of autonomous technical systems. The development of, e.g.,
autonomous robotic systems or ambient intelligence systems involves the real-
time analysis of enormous quantities of data. These data have to be processed
efficiently to provide “on time availability” of relevant information for solving
given tasks. Knowledge has to be applied about what needs to be attended to,
and when, and what to do in a meaningful sequence, in correspondence with
visual feedback on the actual context situation. Contextual cueing may be one
important process that allows shortening the computational time required to
estimate where attention should be directed to. For reasons of implementation,
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Fig. 3. Architecture of a cognitive technical system for realizing the human principle
of attention selection and contextual cueing

it is important to note here that contextual cueing involves at least two different
mechanisms: first, an association between the context information of the envi-
ronment (i.e., the distractor arrangement) and the task-relevant object (i.e., the
target) has to be learned (’contextual learning’), and second, this knowledge has
to be applied to the current environment to guide attention to the most probable
target location (’guidance of attention’).

The architecture in Fig. 3 shows a possibility to represent these mechanisms
as part of the information processing in a cognitive technical system: Starting
point is a task which is given to the system or is autonomously generated based
on previous behavior of the environment or the system itself. An algorithm for
object selection determines a set of objects known to be relevant for the cur-
rent task. Object features, together with context information, are taken from a
database and are transferred to an algorithm for scene perception – the database
plays the role of the human memory for storing explicit and implicit knowledge
on situation-dependent context. The perception algorithm analyzes the data on
the current environment scene (as received from the sensors) with respect to the
selected objects and their embedding in the context obtained from the database.
In order to realize contextual cueing according to the principles found for hu-
man attention selection, a main future challenge in designing the perception
algorithm is to develop new mechanisms for pattern recognition which identify
complete configurations consisting of relevant objects and contexts. The hope is
that such a combined perception leads to a quicker understanding of the momen-
tary environment situation by the cognitive technical system. Newly perceived
configurations are stored in the database as object-context pairs, a process which
can be understood as contextual learning. The following trade-off has to be re-
solved for technical realizations of this learning procedure: Obviously, the larger
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the number of previously experienced object-context pairs is, the higher is the
probability of finding a matching configuration in the database for the currently
envisaged situation. On the other hand, memory restrictions and particularly
the computational effort to find the best-matching object-context pair in the
database will slow down the whole perception process once high numbers of ex-
perienced configurations are stored. This leads to the requirement of defining
similarity measures for contexts, i.e. configurations in which the structure (e.g.
the relative positions of objects) differ less than a specified bound are not re-
peatedly stored in the database. Furthermore, suitable datastructures for fast
referencing of contexts have to be developed.

An essential step of perceiving the environment for robotic systems is to con-
trol sensors (e.g. camera or radar systems) such that data of environment lo-
cations which have high relevance for the present task are obtained first. The
block ’action planning and control’ in Fig. 3 is understand broader, however,
and refers in general to algorithms for computing control signals to be sent to
the actuators. This means that information on the current task and on the per-
ceived scene are used by planning algorithms to determine the behavior of the
cognitive technical system as required for fulfilling the task. While intensive re-
search on planning algorithms has produced a variety of approaches for different
types of systems and tasks (see e.g. [32] for an overview), the challenge is here
to directly include the perceived context into the planning and control trajec-
tory. Once computed, the actions (or action sequences respectively) are included
in the database with reference to the task, the selected objects, and the con-
text identified to be relevant for the configuration, i.e. the actions are part of
the contextual learning procedure. The algorithm for scene perception, contex-
tual learning, and action planning run, of course, concurrently (or iteratively,
respectively) until the present task is accomplished. Since most tasks require
the consideration of dynamic scenes, sequences of scenes and contexts have to
be identified and sequences of actions need to be computed and executed. The
challenge for most autonomous technical systems is to apply scene perception,
planning, and control in such an inter-connected fashion that real-time response
is possible, eventually on the time-scale on which human act. Embedding con-
textual cueing and learning in integrated algorithms seems to be a possible way
of approaching this aim a bit further.

7 Conclusion

Although visual search for a task-relevant object among task-irrelevant objects is
a demanding task for the visual information processing, implicit learning mech-
anisms, such as contextual cueing, allow the visual system to quickly extract
stimulus regularities [9]. This mechanism does not only occur with artificial
stimulus material but also with natural objects (current study) and real-world
scenes [19, 20]. Implementing such a mechanism into cognitive technical systems
may help to develop flexible and adaptive behavior.
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Abstract. This paper presents a probabilistic representation for 3D
objects, and details the mechanism of inferring the pose of real-world
objects from vision. Our object model has the form of a hierarchy of
increasingly expressive 3D features, and probabilistically represents 3D
relations between these. Features at the bottom of the hierarchy are
bound to local perceptions; while we currently only use visual features,
our method can in principle incorporate features from diverse modali-
ties within a coherent framework. Model instances are detected using a
Nonparametric Belief Propagation algorithm which propagates evidence
through the hierarchy to infer globally consistent poses for every feature
of the model. Belief updates are managed by an importance-sampling
mechanism that is critical for efficient and precise propagation. We con-
clude with a series of pose estimation experiments on real objects, along
with quantitative performance evaluation.

Keywords: Computer vision, 3D object representation, pose estima-
tion, Nonparametric Belief Propagation.

1 Introduction

The merits of part-based and hierarchical approaches to object modelling have
often been put forward in the vision community [9,5,11]. Part-based representa-
tions are more robust to occlusions and viewpoint changes than global represen-
tations, and spatial configurations increase their expressiveness. Moreover, they
not only allow for bottom-up inference of object parameters based on features
detected in images, but also for top-down inference of image-space appearance
based on object parameters.

The advantages of visual part-based representations naturally extend to multi-
sensory cases. For example, haptic and proprioceptive information won’t relate
to an object as a whole. Instead, they typically emerge from specific grasps,
on specific parts of the object. Part-based representation offer a neat way to
locally encode cross-modal descriptions that emphasise the relations between
the different types of percepts.

B. Caputo and M. Vincze (Eds.): ICVW 2008, LNCS 5329, pp. 107–120, 2008.
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We are currently developing a 3D, part-based object representation framework,
along with mechanisms for unsupervised learning and probabilistic inference of
the model. Our model combines local appearance and 3D spatial relationships
through a hierarchy of increasingly expressive features. Features at the bottom
of the hierarchy are bound to local visual perceptions. Features at other levels
represent combinations of more elementary features, and encode probabilistic rel-
ative spatial relationships between their children. The top level of the hierarchy
contains a single feature which represents the object.

To detect instances of a model in a cluttered scene, evidence is propagated
throughout the hierarchy by probabilistic inference mechanisms, leading to one
or more consistent scene interpretations: the model is able to suggest a number
of likely poses for the object, a pose being composed of a 3D location and a
3D body orientation defined in the reference frame of the camera that captured
the raw visual data. The use of probabilistic inference algorithms permits the
uniform integration of all available evidence, allowing for unbiased contributions
of all low-level features.

In previous work [2], we presented a learning method that constructs a hier-
archy from a set of object observations. We also gave an overview of an inference
process that followed a straightforwardNonparametric Belief Propagation scheme
[12] and allowed for pose recovery of artificial objects. In this paper, we present in
greater detail a significantly improved version of this inference process. We added
an importance-sampling (IS) message product suggested in a similar form by Ihler
et al. [6], and extended it to a two-level IS sampling of implicit message products
which is readily applicable to pose estimation on real-world objects.

Unsupervised learning, probabilistic representation and robust detection are
three aspects that we believe make our representation a good candidate for the
perception and memory tasks of a cognitive system. Furthermore, the features
organized in the hierarchies are not especially restricted to one input modality.
We currently work with visual input only, but our model is intended to unite
different types of perceptual information, e.g. vision plus haptic and proprio-
ceptive inputs simultaneously. This will produce cross-modal descriptions and
cross-modal behaviors directly applicable to action-related tasks such as grasp-
ing and object manipulation, as a grasp strategy may be linked directly to visual
features that predict its applicability.

We emphasize that we are not developing an object classification framework.
Object classification is best achieved using discriminative models and presup-
poses the presence of one object to be classified. Instead, we intend to develop
object-centric representations that allow for detection and localisation of known
objects within a highly cluttered scene. Also, our representations lend themselves
to applications other than classification (e.g. manipulation).

2 Hierarchical Model

Our object model consists of a set of generic features organized in a hierarchy.
Features that form the bottom level of the hierarchy, referred to as primitive
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features, are bound to visual observations. The rest of the features are meta-
features which embody spatial configurations of more elementary features, either
meta or primitive. Thus, a meta-feature incarnates the relative configuration of
two features from a lower level of the hierarchy.

A feature can intuitively be associated to a “part” of an object, i.e. a generic
component instantiated once or several times during a “mental reconstruction”
of the object. At the bottom of the hierarchy, primitive features correspond
to local parts that each may have many instances in the object. Climbing up
the hierarchy, meta-features correspond to increasingly complex parts defined in
terms of constellations of lower parts. Eventually, parts become complex enough
to satisfactorily represent the whole object.

Formally, the hierarchy is implemented in a Pairwise Markov Random Field.
Features correspond to hidden nodes of the network. When a model is associated
to a particular scene (during construction or instantiation), the pose of feature
i in that scene will be represented by the probability density function of the
random variable xi associated to feature i, effectively linking feature i to its
instances. Random variables are thus defined over the pose space SE(3) = R

3 ×
SO(3).

The structure of the hierarchy is reflected by the edge pattern of the net-
work; each meta-feature is thus linked to its two child features. As noted above,
a meta-feature encodes the relationship between its two children. However, the
graph records this information in a slightly different but equivalent way: instead
of recording the relationship between the two child features, the graph records
the two relationships between the meta-feature and each of its children. The re-
lationship between a meta-feature i and one of its children j is parametrized by
a compatibility potential function ψij(xi, xj) associated to the edge eij . A com-
patibility potential specifies, for any given pair of poses of the features it links,
the probability of finding that particular configuration for these two features.
We only consider rigid-body relationships. Moreover, relationships are relative
spatial configurations. Compatibility potentials can thus be represented by a
probability density over the feature–to–feature transformation space SE(3).

Finally, each primitive feature is linked to an observed variable yi. Observed
variables are tagged with an appearance descriptor called a codebook vector. The
set of all codebook vectors forms a codebook that binds the object model to
feature observations. The statistical dependency between a hidden variable xi

and its observed variable yi is parametrized by an observation potential φi(xi),
also referred to as evidence for xi, which corresponds to the spatial distribution
of the observations. We generally cannot observe meta-features; their observation
potential is thus uniform.

3 Inference

Model instantiation is the process of detecting instances of an object model in a
scene. It provides pose densities for all features of the model, indicating where the
learned object is likely to be present. Instantiating a model in a scene amounts
to inferring posterior marginal densities for all features of the hierarchy.
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The first step of inference is to define priors (observation potentials, evidence)
for all features (hidden nodes) of the model. For primitive features, evidence is
estimated from feature observations. Observations are classified according to
the observation codebook; for each primitive feature i, its observation poten-
tial φi(xi) is estimated from observations that are (softly) associated to the ith

codebook vector. For meta-features, evidence is uniform.
Once priors have been defined, instantiation can be achieved by any applicable

inference algorithms. We currently use a Belief Propagation algorithm of which
we give a complete, top-down view below.

3.1 Belief Propagation

Belief Propagation (BP) [7,10,13] is based on incremental updates of marginal
probability estimates, referred to as beliefs. The belief at feature i is denoted by

b(xi) ≈ p(xi|y) =
∫

...

∫
p(x1, ..., xN |y) dx1...dxi−1dxi+1...dxN

where y stands for the set of observations. During the execution of the algorithm,
messages are exchanged between neighboring features (hidden nodes). A message
that feature i sends to feature j is denoted by mij(xj), and contains feature
i’s belief about the state of feature j. In other words, mij(xj) is a real positive
function proportional to feature i’s belief about the plausibility of finding feature
j in pose xj . Messages are exchanged until all beliefs converge, i.e. until all
messages that a node receives predict a similar state.

At any time during the execution of the algorithm, the current pose belief
(or marginal probability estimate) for feature i is the normalized product of the
local evidence and all incoming messages, as

bi(xi) =
1
Z

φi(xi)
∏

j∈neighbors(i)

mji(xi), (1)

where Z is a normalizing constant. To prepare a message for feature j, feature
i starts by computing a “local pose belief estimate”, as the product of the local
evidence and all incoming messages but the one that comes from j. This product
is then multiplied with the compatibility potential of i and j, and marginalized
over xi. The complete message expression is

mij(xj) =
∫

ψij(xi, xj)φi(xi)
∏

k∈neighbors(i)\j

mki(xi)dxi. (2)

As we see, the computation of a message doesn’t directly involve the complete
local belief (1). In general, the explicit belief for each node is computed only
once, after all desirable messages have been exchanged.

When BP is finished, collected evidence has been propagated from primi-
tive features to the top of the hierarchy, permitting inference of the top feature
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marginal pose density. Furthermore, regardless of the propagation scheme (mes-
sage update order), the iterative aspect of the message passing algorithm ensures
that global belief about the object pose – concentrated at the top nodes – has at
some point been propagated back down the hierarchy, reinforcing globally con-
sistent evidence and permitting the inference of occluded features. While there
is no theoretical proof of BP convergence for loopy graphs, empirical success has
been demonstrated in many situations.

3.2 Nonparametric Representation

We opted for a nonparametric approach to probability density representation for
all entities of the model, i.e. random variable and functions of random variables,
including potentials, messages, and evidence. A density is simply represented by
a set of (possibly weighted) particles; the local density of these particles in a
given region is proportional to the actual probabilistic density in that region.
The number of particles supporting a density is fixed, and will be denoted by n.
Whenever a density has to be evaluated, traditional kernel density estimation
methods can be used. Compared to usual parametric approaches that involve a
limited number of parametrized kernels, a nonparametric approach eliminates
problems like fitting of mixtures or the choice of a number of components. Also,
no assumption concerning the shape of the density has to be made.

Figure 1 shows an example of a hierarchy for a traffic sign. Feature 2 is a
primitive feature that corresponds to a local black-white edge segment – the
white looks greenish on the picture. The blue patch pattern in the φ2(x2) box
is the non-parametric representation for the evidence distribution for feature 2.
The blue patch pattern in the x2 box is the non-parametric representation for
the posterior density of x2, i.e. the poses in which part “feature 2” is likely to
be found. Feature 4 is the combination of primitive features 1 and 2. The red
patch in the x4 box shows its inferred pose in the scene. The ψ4,2(x4, x2) box
shows the encoding of the relationship between features 4 and 2; for a fixed
pose for feature 4 (in red, bottom right of the box), it shows the likely poses
for feature 2 (in blue). The sign itself corresponds to feature 6, denoted by
its random variable x6. It is the composition of two features, one represent-
ing the central “opening bridge” pattern and the corners of the inner trian-
gle (feature 4), the other representing the central pattern and the outer edges
(feature 5).

3.3 Nonparametric Belief Propagation

For inference, we use a variant of BP, Nonparametric Belief Propagation (NBP),
an algorithm for BP message update in the particular case of continuous, non-
Gaussian potentials [12]. The underlying method is an extension of particle fil-
tering; the representational approach is thus nonparametric and fits our model
very well.
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Fig. 1. Example of a hierarchical model of a traffic sign
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NBP is easier to explain if we decompose the analytical message expression
(2) into two steps:

1. Computation of the local belief estimate

βts(xt) = φt(xt)
∏

i∈N(t)\s

mit(xt), (3)

2. Combination of βts with the compatibility function ψts, and marginalisation
over xt

mts(xs) =
∫

ψts(xt, xs)βts(xt)dxt. (4)

NBP forms a message by first sampling from the product (3) to collect a
non-parametric representation for βts(xt), it then samples from the integral (4)
to collect a non-parametric representation for mts(xs). These two operations
are executed alternately: transform local estimate to form a message, merge
messages to form a local estimate, etc...

Sampling from the message product (3) is conceptually straightforward. Us-
ing Gaussian kernel density estimation, each factor (messages and evidence) can
be represented by a weighted sum of n Gaussians. The product of a series of
Gaussians is also a Gaussian, and the parameters (mean, variance, weight) of
the product Gaussian can easily be computed from the parameters of the factor
Gaussians. Hence, letting d = (N(t)−1)+1 denote the number of factors in the
product (3), βts(xt) can be expressed as a weighted sum of nd Gaussians [12]. A
nonparametric representation for βts(xt) can thus be constructed by sampling
from a mixture of nd Gaussians, which amounts to repetitively selecting one
Gaussian at random and taking a random sample from it. The computational
cost of this exhaustive approach is O(nd). Clearly, exhaustive product imple-
mentations will suffer from overly long computation times.

The second phase of the NBP message construction computes an approxima-
tion for the integral (4) by stochastic integration. Stochastic integration takes
a series of samples x̂

(i)
t from βts(xt), and propagates them to feature s by sam-

pling from ψts(x̂
(i)
t , xs) for each x̂

(i)
t . It would normally also be necessary to take

into account the marginal influence of ψts(xt, xs) on xt. In our case however,
potentials only depend on the difference between their arguments; the marginal
influence is a constant and can be ignored.

3.4 Importance Sampling

The computational bottleneck of NBP clearly lies in message products. Ihler
et al. explored multiple improvements over the exhaustive product [6], one of
which is to sample from the product using Importance Sampling (IS). IS is a
technique for sampling from an unknown distribution p(x) by sampling a series
of examples x̂(�) from a known distribution q(x) ideally similar to p. IS accounts
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for the difference between the target distribution p and the proposal distribution
q by assigning to each sample a weight defined as

w(�) =
p(x̂(�))
q(x̂(�))

.

To produce a sample of size n, one usually takes rn weighted examples from q,
where r > 1, and eventually resamples them to a size of n. The closer q is to p,
the better {x̂(�)} will approximate p.

Sampling from a message product (3) with IS works by selecting one of the
messages mut(xt) (or the evidence) as proposal distribution, the rest of the
factors providing importance weights:

w(�) =
φt(x̂

(�)
t )

∏
i∈N(t)\s mit(x̂

(�)
t )

mut(x̂
(�)
t )

= φt(x̂
(�)
t )

∏
i∈N(t)\{s,u}

mit(x̂
(�)
t ).

IS produces n samples from a product of d factors in O(rdn2) time. From here
on, we will consider that the number of neighbors a node may have is bounded
and typically low, and ignore it in complexity statements. IS thus produces n
samples from a product of d factors in O(rn2) time.

4 Efficient Importance Sampling of Message Products

The success of NBP inference highly depends on a sufficient density resolution,
i.e. having enough particles to support the different modes of potentials, local
estimates, and messages. Moving to more complex applications will generally
require an increase of n, which has a hard impact on computational time and
memory needs. This section presents a variant of the IS-based NBP algorithm
that yields a significant improvement of the inference power without any memory
impact. Its computational behavior is close to original IS-based NBP, with some
interesting benefits.

4.1 Representational Constraints

As explained above, A message that feature i sends to feature j – denoted
by mij(xj) – contains feature i’s belief about the state of feature j. Feature
i will often possess a rather inaccurate local estimate, e.g. at the beginning
of propagation when each bottom feature receives observations from the whole
scene surrounding an object of interest. Additionally, even if a local estimate
was exact, transforming it with ψij will generate a large number of possible
states for feature j, only a fraction of which will eventually become confirmed
by other messages incoming to j – the job of message products precisely is to
extract sections that overlap between incoming messages. Generating a message
from local estimates can be pictured as an exploration process, while merging
messages together would be a confirmation/concentration process. From these
observations, it intuitively follows that one may achieve better performance by
increasing the resolution of messages only, leaving potentials and local estimates
at their initial resolution.
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4.2 Implicit Messages

Let us now turn to the propagation equation (2), which we analytically de-
composed into a multiplication (3) and an integration (4). We explained that
NBP implements BP by physically performing the same decomposition, i.e. com-
puting explicit nonparametric representations for messages and local estimates
alternately. In this section, we propose a somewhat different implementation, in
which explicit representations are only computed for local estimates.

Let us assume we are in the process of constructing a nonparametric represen-
tation for βts(xt), i.e. the local estimate of feature t that includes all incoming
information but that from s. In typical IS-based NBP, we first choose one in-
coming message mut(xt) at random (u �= s) as IS proposal density; then, we
repetitively take a sample x̂

(�)
t from mut(xt) and compute its importance weight

w(�) = φt(x̂
(�)
t )

∏
i∈N(t)\{s,u}

mit(x̂
(�)
t ). (5)

One can notice though that neither of these two operations do actually need
an explicit expression for incoming messages. Producing x̂

(�)
t from βut(xt) and

ψut(xu, xt) is straightforward. In turn, Expression (5) can be rewritten

w(�) = φt(x̂
(�)
t )

∏
i∈N(t)\{s,u}

∫
ψit(xi, x̂

(�)
t )βit(xi)dxi. (6)

Evaluating each integral is achieved by sampling p times an example x̂
(k)
i from

either ψit(xi, x̂
(�)
t ) or βit(xi), evaluating βit(x̂

(k)
i ) or ψit(x̂

(k)
i , x̂

(�)
t ) respectively,

and taking the average over k.
The computational complexity of importance weight computation with ex-

plicit messages (5) is O(n), because of linear iteration through all messages and
evidence which are of size n. The computational complexity with implicit mes-
sages (6) is O(pn), because of p linear iterations through potentials or the local
estimates. However, implicit messages effectively achieve the same resolution as
explicit messages would if these explicit messages were supported by pn parti-
cles, while keeping memory needs at O(n). Importance weight computation with
implicit or explicit messages are thus expected to display processing times of the
same order, while the implicit method will categorically require less memory.

4.3 Two-Level Importance Sampling

One known weakness of IS-based NBP is that it cannot intrinsically concentrate
its attention on the modes of a product, which is an issue since individual mes-
sages often present many irrelevant modes [6]. We overcome this problem with
a two-level IS: we first compute an intermediate representation for the product
with the procedure explained above, we then use this very representation as
the proposal distribution for a second IS that will be geared towards relevant
modes. The intermediate representation is obtained with sparse implicit mes-
sages (p � n) but many importance samples (r 	 1), while the second IS uses
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rich implicit messages (p ≈ n) but a low value for r. Denoting by β∗
ts(xt) the

intermediate product representation, importance weights for the second IS are
computed as

w(�) =
φt(x̂

(�)
t )

∏
i∈N(t)\s mit(x̂

(�)
t )

β∗
ts(x̂

(�)
t )

.

In the equation above, messages are implicit.
The two-level IS described above and the high-resolution messages have been

crucial elements of the successful application to real-world object presented at
Section 5.2.

5 Evaluation

5.1 Pose Estimation

The feature at the top of a hierarchical object model represents the whole object.
When instantiating the model in a scene in which exactly one instance of the
object is present, the top feature density should present one major mode, which
can be used to estimate the object pose. Let us consider a model for a given
object, and a pair of scenes where the object appears. In the first scene, the
object is in a reference pose. In the second scene, the pose of the object is
unknown. The application of our method to estimate the pose of the object in
the second scene goes as follows:

1. Instantiate the object model in the reference scene, and compute a reference
object pose π1 as the mean of the top feature density major mode.
We emphasize that a hierarchy comes from unsupervised recursive combina-
tions of features [2]. Even though the object is in a reference pose, π1 is not
expected to be located at (0, 0, 0) or aligned with (x,y, z), which makes this
first step necessary.

2. Instantiate the object model in the unknown scene and compute pose π2
from the major mode of the top feature density.

3. Let t be the transformation between π1 and π2. This transformation corre-
sponds to the rigid body motion between the pose of the object in the first
scene and its pose in the second scene. Since the first scene is a reference
pose, t is the pose of the object in the second scene.

A prominent aspect of this procedure is its ability to recover an object pose
without explicit point-to-point correspondences. The estimated pose emerges
from a negotiation involving all available data.

5.2 Experiments

In this section, we demonstrate the applicability of our model with a series
of pose estimation experiments in various cluttered scenes. We chose to learn
models for the three objects presented at Figure 2(a). We then tried to estimate
their poses in the scenes of Figure 2(b).
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(a) Learning (b) Evaluation

Fig. 2. Input imagery (only the left image in each stereo pair is presented). Effective
resolution is 1280 × 960 pixels.

Fig. 3. Examples of ECV representations, extracted from scenes of Figure 2

Observations are provided by an early-cognitive-vision (ECV) system [8],
which extracts 3D primitives from stereo views of a scene. The quality of such
ECV representations varies as a function of local visual signal quality. Figure 3
illustrates the ECV primitives for certain scenes of Figure 2.

Models for the three objects of Figure 2(a) were learned following the proce-
dure mentioned above [2]. These models were learned from a clean view of each
object (the reference scene), for example from the ECV representation in the
first image of Figure 3. Each model has also been instantiated in its reference
scene to compute its reference pose π1.

The three models were all instantiated in the test scenes of Figure 2(b), using
observations like these of Figure 3 as evidence. Looking closer at the instantiation
of one model in one scene, there are two cases to consider. First, the model had no
instance in the scene. The top-feature density was then relatively uniform, and
the experiment did not need to go any further. In the second case, an instance was
present. It was then always verified that the top feature did present a principal
mode π2. We could thus compute the transformation t between π1 and π2, which
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Illustration of the pose estimation accuracy. Each picture shows in green a scene
that contains one object of interest and in red the pose of that object inferred by our
system.

corresponds to the estimated rigid body motion between the pose of the object
in the reference scene, and to its pose in the noisy scene.

We can evaluate the success of the experiment by transforming the reference
scene with t, and superimposing it onto the test scene; if the experiment is suc-
cessful, the object of interest should overlap with its instance. Such evaluations
are presented at Figure 4. All the experiments that we ran ended with successful
pose recovery. For traffic signs, the worst estimate (Figure 4(d)) corresponds to
the dead-end signal pose estimation in the sixth scene of Figure 2(b) (second row,
third column). This is however one of the most difficult scenes: it has a brown
background, thus changing the outside color of ECV primitives on the traffic
sign contours. This induces wrong associations of observations to primitive fea-
tures, and makes for harder inference. Estimation is still quite accurate given
the difficulty of the scene. Other typical estimates are presented at Figure 4. In
particular, 4(a) shows a good result despite occlusion.

The accuracy of probabilistic pose estimation highly depends on the resolution
of the representation. When an experiment lacks accuracy, retrying with more
particles usually produces better results. Therefore, a meaningful quantitative
evaluation must take into account the number of particles per density. Figure 5
shows the pose estimation error as a function of the number of particles per
density. Because of the probabilistic nature of inference, runs with different soft-
ware random seeds produce different results. Therefore, we run each experiment
several times and study the mean error, plotted in red in the figure. The mean
error decreases quickly when going from 40 to 100 particles, and stabilizes for
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Fig. 5. Pose estimation accuracy as a function of the number of particles per density,
for an instantiation of the opening-bridge traffic sign within the first scene of Figure
2(b). Left and right plots correspond to location and orientation error respectively. The
solid lines (red) indicate the mean absolute error. The dashed lines (green) indicate the
variance across runs. Location error can be compared to the traffic sign edge, which is
190mm long. See the text for details.

higher resolutions. We also plotted one standard deviation above the mean er-
ror, in dashed green. The error variance also decreases as the number of particles
increases.

6 Discussion

6.1 Related Work

Compared to recent work in the field [1,3,4], the most distinguishing aspects of
our approach are its explicit 3D support and the unbiased contributions of all
low-level features. We learn from observations defined in 3D, and infer a full
3D pose. The use of a sophisticated inference algorithm permits the uniform
integration of all available evidence, avoiding an explicit combinatorial search.

6.2 Conclusion

We presented an object representation framework that encodes probabilistic re-
lations between 3D features. We discussed an Importance-Sampling–NBP in-
ference process which, together with the learning scheme of our previous work
[2], allow us to learn unsupervised part representations for real objects and to
instantiate them in cluttered scenes. We are thus able to achieve pose recovery
without prior object models, and without explicit point correspondences.

Our method can in principle incorporate features from more perceptual modal-
ities than vision. Our objective is to observe haptic and kinematic features that
correlate with successful grasps, and integrate them into the feature hierarchy.
Then, given a visual scene, grasp parameters can be suggested by probabilistic
inference within the feature hierarchy.
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Abstract. In this paper, we propose a hierarchical architecture for rep-
resenting scenes, covering 2D and 3D aspects of visual scenes as well
as the semantic relations between the different aspects. We argue that
labeled graphs are a suitable representational framework for this repre-
sentation and demonstrate its potential by two applications. As a first
application, we localize lane structures by the semantic descriptors and
their relations in a Bayesian framework. As the second application, which
is in the context of vision based grasping, we show how the semantic re-
lations can be associated to actions that allow for grasping without using
any object knowledge.

Keywords: cognitive vision, semantic reasoning, bayesian classification.

1 Introduction

In this work, we represent scenes with a hierarchy of visual information. The
input consists of stereo images (or sequences of them) that become processed at
different levels. Information of increasing semantic richness becomes processed
at the different levels, covering multiple aspects of a scene such as 2D and 3D in-
formation as well as geometric and appearance based information. Furthermore,
the spatial extent of the processed entities increases in the higher levels of the
hierarchy.

We make use of rich local symbolic descriptors, describing edge-like structures
and homogeneous structures, as well as groups (contours and areas) formed
by them. Furthermore, rich semantic relations between these descriptors and
the groups are defined. The descriptors describe local information in terms of
multiple visual modalities (2D and 3D position and orientation, colour as well
as contrast transition). Moreover, there is a set of semantic relations defined
between them such as the Euclidean distance in 2D and 3D as well as parallelism,
co-planarity and co-colority (i.e., sharing similar colour structure).

B. Caputo and M. Vincze (Eds.): ICVW 2008, LNCS 5329, pp. 121–134, 2008.
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Scenes become represented as a set of labeled graphs, whose nodes are labeled
by properties of local descriptors, groups and areas thereof and edges between
the nodes represent the semantic relations between the nodes in the graphs.
Idealized graphs can be defined or learned from scene structures such as road
lanes and can be efficiently matched with the extracted scene graphs by making
use of the rich semantics.

From a cognitive point of view, it is important to have a representation that
allows for an efficient storage of information as well as for reasoning processes
on visual scenes. From a storage point of view, it is not convenient to memorize
information on a very low and local level since it would require a large amount of
memory. Also it would be much more difficult for learning processes to make use
of relevant semantics. As a consequence, the very condensed graph representation
is much more suitable for memorizing objects.

We present two applications of our hierarchical framework: As a first appli-
cation, we show how a street structure can be characterized by both its appear-
ance and relations between its sub-components. Here, the matching process is
governed by Bayesian reasoning based on local descriptors and semantic rela-
tions between them, which are controlled by prior probabilities. Moreover, this
Bayesian reasoning process makes explicit the relative importance of the different
cues and relations opening the way for the learning of sparse graph structures.
In terms of semantic reasoning, we can show that, by means of the semantic
relations, it is possible to mediate between textual descriptions of scene struc-
tures (e.g., the lanes) and visual detection as examplified. Such graphs can be
idealized (or, generalized) either through learning or can be provided as world
knowledge, and be used for matching (see section 4.1).

The second application is based on [1], and illustrates how the approach pre-
sented herein embeds in a robotic scenario. In this scenario, groups of visual
features fulfilling certain semantic relations can be associated to grasping ac-
tions, allowing for the grasping of objects without using any model knowledge.

The use of hierarchical representations, mostly graphs, is commonplace for
scene representation. For example, scene graphs and spatial relationship graphs
are heavily used in Computer Graphics for representing 3D world and scenes
[2]; such graphs are designed mostly for rendering purposes, and they are not
sufficient for covering the 2D properties of scenes. Relative Neighborhood Graphs,
introduced by [3], are used in Computer Vision studies for representation of
structured entities [4]. A similar graphical structure called Region Adjacency
Graph is used for region-based representation of objects or scenes [5,6]. There
exist a variety of similar graphical representations and we refer the interested
reader to [7].

Our contribution in this paper is the introduction of a hierarchical vision
system that allows for semantic reasoning based on rich descriptors and their
relations. This vision system covers not only the appearance aspects but also the
geometrical properties of the scene, which allows for doing reasoning in both 2D
and 3D world. In particular, it allows for the step-wise translation of a textual
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description of an object to a visual representation that can be used for localizing
a certain structure in a visual scene.

The paper is structured as follows: In section 2, the visual scene representation
is introduced. In section 3, we describe the embedding of the visual representation
in graphs. We then describe the two applications in section 4. We introduce the
algorithm for the detection of a lane structure in section 4. Another application
in the context of vision based grasping is described in section 4.2. In section 5, we
discuss the potential of this approach in terms of a cognitive system architecture.

2 Hierarchical Architecture

We represent scenes with a three-level architecture of visual entities (see figure 1)
of increasing richness and semantic. In the following subsections, we introduce
the different levels of this hierarchical representation in order of increasing com-
plexity, starting from the lowest level.

Non−linear FiltersLinear Filters

Image

2D Symbolic Descriptors

3D Symbolic Descriptors

Si
gn

al
−

sy
m

bo
l L

oo
p

2D Contours and Areas

3D Contours and Surfaces

Fig. 1. An overview of the hierarchical architecture introduced in this paper. The
visual entities denote the nodes of the graphical representation, and the red edges,
which correspond to perceptual grouping and correspondence relations, are the links
between the nodes. Higher levels in the hierarchy correspond to more symbolic, more
spacious and more descriptive visual entities. See the text for more details and figure
6 for examples of the different levels of the hierarchical architecture.

2.1 Linear and Non-linear Filtering

At the first level, we apply a combination of linear and non-linear filtering op-
erations to extract pixel-wise signal information in terms of local magnitude,
orientation, phase [8] as well as optical flow [9] — for details see [10,11].
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2.2 Symbolic Representation in 2D

The transition to a local symbolic description is done at the second level (the
“Symbolic Representation in 2D” layer in figure 6) where local image patches are
described by the so-called multi-modal primitives [12]. The primitives provide a
condensed semantic description of the local (spatial-temporal) signal in terms of
image orientation, phase, colour and optic flow. The difference to the first level
is that the information is sparsified, highly condensed and associated to discrete

1) 2)

4)

3)

(a) (b) (c)

Fig. 2. (a) Representation and attributes of a 2D primitive where (1) orientation of
the primitive, (2) the phase, (3) the color and (4) the optic flow and reconstruction of
a 3D primitive. (b) A sample scene and a closer view for the region of interest. (c)
Extracted 2D primitives for the example scene in (b).
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Fig. 3. Illustration of the perceptual relations between primitives. (a) Collinearity of
two 2D primitives. (b) Co–planarity of two 3D primitives Π i and Π j . (c) Co–colority
of three 2D primitives πi, πj and πk. In this example, πi and πj are cocolor, so are πi

and πk; however, πj and πk are not cocolor. (d) Normal distance between Π i and Πj

is 0 if Πj is outside the cylindrical volume surrounding Π i and defined otherwise as
the distance between Πj and the line created from the location of Π i which goes in
the direction of Π is orientation vector.
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positions with sub-pixel accuracy. Figure 2 shows extracted 2D primitives (de-
noted as π) for an example scene.

At this level, the information is sparsely coded such that interaction processes
between visual events can be modeled more efficiently than at the pixel level (for
a detailed description of these interaction processes see, e.g., [13]). Already at
this level, semantic relations between local 2D primitives can be defined. Besides
the 2D distance, primitives allow collinearity and co-colourity relations to be
defined between them: Two primitives are collinear if they are part of the same
line (figure 3(a) and 4(f)). Two primitives, on the other hand, are co-colour if
the colours of their sides that face each other are similar (figures 3(c) and 4(e)).
See [14] for more information about the definition of these relations.

(a) Input Image (b) Colour (c) In-ground-plane

(d) Co-planarity (e) Co-colourity (f) Collinearity

(g) Parallelism (h) Proximity (i) Normal distance

Fig. 4. A set of 2D and 3D relations for the visual entities extracted from an example
scene whose left view is provided in (a). (b) Primitives which are black. (c) 3D primitives
which satisfy the ”ground-plane” relation. (d-g) Connects the 3D primitives that are
respectively co-planar, co-colour, collinear and parallel to a selected 3D primitive. (h)
Connects the 3D primitives that are of a given 3D distance to a selected 3D primitive.
(i) Connects the 3D primitives whose normal distance to a selected 3D primitive equals
a given value.
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The 2D descriptors naturally organize themselves along contours and the se-
mantic description is highly correlated along such a contour (e.g., 2D orientation
varies smoothly and in general colour, phase and optic flow are similar for the
primitives on the contour). Hence, it is natural to condense the information of
the primitives organized along a contour in the form of a more abstract parame-
terization in terms of unified appearance based descriptors as well as a NURBS
(Non-Uniform Rational B-Splines [15]) representation of the geometry of the
contours (see figure 5). By this, we reduce the number of bits used to represent
a scene further as well as the number of second order relations of visual events.
The latter point is in particular relevant, when we want to code objects with
these relations.

Fig. 5. Position and orientation correction of 3D primitives by using NURBS. After
fitting NURBS (represented as green lines) to groups of primitives (represented as
black lines), position and orientation of each primitive is recalculated. The procedure
is shown on a good reconstruction (middle road marker) as well as a bad one (left lane
marker).

2.3 Symbolic Representation in 3D

Using the corresponding 2D primitives in the left and right image, 3D primitives
can be reconstructed (denoted by Πj). At the third level, the reconstructed 3D
primitives inherit the appearance based properties of the 2D primitives (phase
and colour) and extend the 2D position and 2D orientation to 3D (see figure
2). Moreover, the semantic relations between 2D primitives can be extended to
the 3D primitives and also further enriched by particular 3D relations such as
co-planarity or 3D properties such as in-ground-plane (see figures 3 and 4). Co-
planarity refers to the being-on-the-same-plane relation between two 3D primi-
tives or 3D contours (figures 3(b) and 4(d)). See [14] for more information about
the definition of co-planarity. In-ground-plane relation, on the other hand, cor-
responds to all 3D entities that are in the ground plane (figure 4(c)). The 2D
contour representation becomes also extended to 3D contours by connecting 3D
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primitives that are linked together. NURBS are fitted to the 3D contours as in
2D to obtain a global mathematical description of the 3D contours. In addition,
the NURBS parametrization can be used to increase the precision of the local
feature extraction process (see figure 5).

Note that this process is not a pure bottom-up process, as it involves corrective
feedback mechanisms at various levels. These are described in more detail in, e.g.,
[13,16].

3 Semantic Graphs

The hierarchy of representations discussed above provides us with a number of
2D and 3D local entities that are linked to more global entities. These entities are
semantically rich as such, and in addition there exist semantic relations between
them. Because of this linkage, we suggest that labeled graphs are the suitable
representational framework for representing scenes. In these graphs, the nodes
represent different visual entities such as primitives, contours and areas with
their first order properties while the links represent the semantic relations. Note
that actually we have a set of labeled graphs, which are linked to each other and
with this linkage, they cover the 2D and 3D aspects of a scene (see figure 6) since
each relation naturally defines a sub-graph, covering a structure in a scene.

In processing of information across the different levels, the semantic richness
of information increases from level to level. However, it is important to point
out that with this increase of semantical richness, also the likelihood of errors
in the processing increases due to loss of valuable information or introduction of
noise through thresholding. In addition, the uncertainty of visual information, in
particular in the 3D domain, might also make any reasoning uncertain. Hence,
we intend to be able to use the extracted information on all levels according
to the current task and uncertainties of information at the different levels. In
addition, spatial–temporal processes are defined that increase the stability and
the certainty of information by spatial-temporal predictions [13]. The proposed
hierarchy allows for processes that transfer information from the symbolic level
to the signal level to recover weak information in so-called signal-symbol loops
(see [16]). Such loops are essentially feedback mechanisms that carry the results
of symbolic processing to the signal level.

4 Applications

In this section, we give two applications of the semantic reasoning process. First,
we show how a lane structure can be described by the semantic descriptors and
their relations in a Bayesian framework (section 4.1). Then we describe another
application in a robotic context (section 4.2).

4.1 Lane Finding Using Bayesian Reasoning

A lane in our lab environment (see figure 4(a)) can be characterized by the colour
and the width of the lane marker, which is known also to be in the ground plane,
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Fig. 6. A multi-level graph structure. For clarity, only a subset of the links is drawn,
and the links corresponding to different relations such as parallelism and co-colority
between 2D or 3D entities are skipped. “Image and Filters” (IF) layer is the input image
which contains pixels as the nodes of the graph. “Symbolic Representation in 2D” (SR-
2D) layer contains the 2D primitives. The links between the IF layer and the SR-2D
layer correspond to ”part-of” relations between pixels and primitives. “2D Contours
and Areas” (CA-2D) layer contains image areas (each area is drawn in a different color)
and 2D contours (in black). The neighborhood relations between two areas and between
an area and a contour are drawn respectively in blue and red. The links between the
SR-2D layer and the CA-2D layer correspond to ”part-of” relations between primitives,
and areas and contours. The “Symbolic Representation in 3D and 3D Contours” (SRC-
3D) layer includes 3D contours in black (the 3D surfaces are skipped for clarity), and
the links in red and light green between the 3D contours respectively denote coplanarity
and cocolority relations between the contours. The links between the CA-2D layer and
the SRC-3D layer are ”projection” relations between the 2D and 3D contours.
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as well as by its distance to the other lane marker. As a textual description of
the lane one could state:

A lane consists of two lane markers with distance dfar which are both in
the ground plane. A lane marker has a width dnear and has the colour
‘black’.

An idealized representation of this textual description in a graph is shown
in figure 7. The representation introduced in the last two sections allows for
directly applying the terms used in the textual description. Colour and ’being
in ground plane’ are first order attributes of primitives and groups while the
term ’distance’ corresponds to the relation ’normal distance’ (figure 3). Hence,
the textual description can be easily translated in our visual representations.
However, there are two problems we have to face: First, a lane is not described
by one property, or relation, but by a number of properties. Therefore, these dif-
ferent cues need to be combined. Second, scene interpretation processes have to
face uncertainties in the feature extraction process. Reasons for the uncertainties
are, for example, noise in the recording process, limited resolution as well as the
correspondence problem in the stereo reconstruction.

Fig. 7. A graph showing an idealized representation of the lane in our lab environment

To merge the different cues as well as to deal with uncertainties, we make use
of a Bayesian framework. The advantage of Bayesian reasoning is that it allows:

– making explicit statements about the relevance of properties for a certain
object,

– introduction of learning in terms of prior and conditional probabilities, and
– assessing the relative importance of each type of relation for the detection

of a given object, using the conditional probabilities.
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Bayes formula (e.g., see [17]) enables to infer the probability of an unknown
event conditioned to other observable events and to prior likelihoods. Let P (eΠ

i )
be the prior probability of the occurrence of an event eΠ

i (e.g., the probabil-
ity that any primitive lies in the ground plane). Then, P (eΠ

i |Π ∈ O) is the
conditional probability of the visual event ei given an object O.

Our aim is to compute the likelihood of a primitive Π being part of an object
O given a number of visual events relating to the primitive:

P (Π ∈ O|eΠ
1 , . . . , eΠ

n ). (1)

According to Bayes formula, equation 1 can be expanded to:

P (eΠ
1 , . . . , eΠ

n |Π ∈ O)P (Π ∈ O)
P (eΠ

1 , . . . , eΠ
n |Π ∈ O)P (Π ∈ O) + P (eΠ

1 , . . . , eΠ
n |Π¬ ∈ O)P (Π¬ ∈ O)

. (2)

In this work we assume independence between eΠ
1 , . . . , eΠ

n (we intend to in-
vestigate to what degree this assumption holds in a future work). If eΠ

1 , . . . , eΠ
n

are independent then P (eΠ
1 , . . . , eΠ

n |Π ∈ O) can be written as:

P (eΠ
1 , . . . , eΠ

n |Π ∈ O) = P (eΠ
1 |Π ∈ O) · . . . · P (eΠ

n )|Π ∈ O), (3)

and

P (eΠ
1 , . . . , eΠ

n |Π¬ ∈ O) = P (eΠ
1 |Π¬ ∈ O) · . . . · P (eΠ

n |Π¬ ∈ O), (4)

and the formula (2) becomes rather easy.
Using this framework for detecting lanes, we first need to compute prior prob-

abilities. This is done by hand selecting the 3D primitives being part of a lane in
a range of scenes and calculating the relevant relations for these selections. The

Table 1. Prior probabilities

Type Probability
P (Π in lane) 0.44792
P (Π not in lane) 0.55208
P (Π being black) 0.70058
P (Π being black | Π in lane) 0.97959
P (Π being black | Π not in lane) 0.47391
P (Π in ground plane) 0.49925
P (Π in ground plane | Π in lane) 0.95960
P (Π in ground plane | Π not in lane) 0.12543
P (Π has normal distance dfar) 0.35943
P (Π has normal distance dfar | Π in lane) 0.66433
P (Π has normal distance dfar | Π not in lane) 0.11131
P (Π has normal distance dnear) 0.41015
P (Π has normal distance dnear | Π in lane) 0.86170
P (Π has normal distance dnear | Π not in lane) 0.04377
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(a) Original indoor image (b) Extracted primitives (c) Selected primitives

(d) Original outdoor image (e) Extracted primitives (f) Selected primitives

Fig. 8. Extracting the lane in two scenarios: (a-c) showing our indoor lab environment
and (d-f) showing an outdoor scenario

results are shown in table 1. The numbers reveal that ‘being in ground plane’
and ‘near normal distance’ are the strongest relations as they show the largest
difference in probability between the conditions ‘in lane’ and ‘not in lane’.

Figure 8 shows the results of using the Bayesian framework with the computed
prior probabilities in two different scenarios: our indoor lab environment and an
outdoor scene. The same prior probabilities were used in both scenarios, but
for the outdoor scene, the values and thresholds of the relations underlying the
probabilities had to be changed to fit the color and dimensions of a real lane.

4.2 Associating Actions to Co-planar Groups

To underline the embedding and strength of our approach of utilizing seman-
tic relations between visual events in the hierarchical representation described in
section 2, we briefly present new results on an application that has been described
in more detail in [1]. In this application, relations between primitives (or groups)
become associated to actions. In figure 9 (left bottom), a grasping hypothesis
connected to a co-planar pair of primitives is shown. Hence, the co-planarity
graph shown in figure 9 (right), corresponding to the white butter dish, can be
associated to grasping hypotheses (as indicated in the middle of the figure). In
[18], we could show that by such a simple mechanism, objects in rather complex
scenes can be grasped with a high success rate. In figure 10 (left), a scene with
a number of objects is shown. Using the grasping reflex described in 9, it was
possible to clean the scene (after approximately 30 grasping attempts) except
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Fig. 9. The 2D contours extracted from the example view on the top-middle are drawn
in different colors on the left. The coplanarity graph of the white cup is also shown
in black on the left, and this graph suggests a grasp of the type shown in the lower
right (the red spheres represent two coplanar representative primitives out of the two
contours). The resulting grasp is shown on the left and in the bottom-middle image.

(a) (b)

Fig. 10. Co-planar pairs of contours predict groups. (a) The four different elementary
grasping actions defined based on a pair of co-planar groups. (b) Robot scene before
the grasping procedure has been applied. (c) Scene after all graspable Objects have
been removed by the system.

one object for which the system’s embodiment precluded grasping (i.e., the two
finger grasper attachment of the robot could not grasp the round can in any
way).

5 Discussion

In this work, we introduced a hierarchical representation of semantically rich
descriptors and their relations, and argued that labeled graphs are a suitable
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framework for scene representation, enabling cue merging and action associa-
tion. Within this representation, Bayesian reasoning has been applied for effi-
cient cue-merging, allowing for relating textual descriptions to extracted visual
information. We also outlined that in such a framework feedback mechanisms
at different levels can be used to disambiguate the information, in particular
through feedback between the symbolic and signal level.

In our current work, we are aiming at the development of efficient matching
strategies that realize the full potential of our representations. In particular, we
are interested in structures that cannot be completely defined by their appear-
ance only (as for example in the case of street signs) but by the relations of
sub-structures to each other (as, for example, in case of the task of distinguish-
ing different kinds of road structures such a motorways, crossings, motorway
exits but also in other more general object categorization tasks).

Acknowledgements

This work has been supported by the European Commission - FP6 Project
DRIVSCO (IST-016276-2).

References

1. Aarno, D., Sommerfeld, J., Kragic, D., Pugeault, N., Kalkan, S., Wörgötter, F.,
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K.M.M.V., Pugeault, N., Krüger, N.: Compact and accurate early vision processing
in the harmonic space. In: International Conference on Computer Vision Theory
and Applications (VISAPP) (2007)

11. Felsberg, M., Sommer, G.: The monogenic signal. IEEE Transactions on Signal
Processing 49(12), 3136–3144 (2001)
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Object Detection for a Humanoid Robot Using a
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Andreas Fidjeland, Murray Shanahan, and Alexandros Bouganis

Department of Computing
Imperial College London

180 Queen’s Gate
London SW7 2AZ, UK

Abstract. We present an architecture for detecting generic objects in
unstructured scenes for an embodied visual system. The proposed ar-
chitecture integrates the contributions of a collection of loosely coupled
processes, each supplying a different type of information derived from a
robot’s sensors, including vision and kinesthesia. The core of the archi-
tecture is a probabilistic global workspace, which is used to incrementally
build a representation of the scene, and whose contents are made avail-
able to the whole cohort of processes. The loosely coupled nature of the
architecture facilitates parallelisation, and makes it easy to incorporate
additional processes providing new sources of information. We provide an
instantiation of this architecture using five processes on an upper-torso
humanoid robot. Preliminary results show that the system can classify
the elements of a scene well enough for the robot to be able to detect
and touch a variety of movable objects within its reach.

Keywords: cue integration, vision systems architecture, global
workspace.

1 Introduction

Truly general object detection is still an unsolved problem. Highly specialised
methods have been developed for a number of vision sub-problems, such as for
stereopsis and optical flow. However, combining these methods into scalable,
robust object-detecting systems proves challenging.

The present paper describes a prototype vision system for domain-general
object detection based on the idea of combining (or “fusing”) the contributions of
multiple loosely coupled information “channels” into a small set of probabilistic
maps. These maps combine information over time from multiple channels and
from multiple sensory modalities. The principle underlying the work is that
a large number of individually weak cues, supplied by different channels, can
be combined to generate high quality maps of the scene, even when the scene
is unstructured and lighting conditions are poor, as they typically are in real
life. The set of maps are in turn made available to the full cohort of channels.
Each channel can thus take advantage of the earlier contributions from the other
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channels, but are only loosely coupled to these through the shared data structure.
The architecture is somewhat inspired by the work of Baars [1]. In his terms, the
set of probabilistic maps can be likened to a global workspace (or blackboard),
while the information channels can be likened to a set of processes competing to
influence the global workspace.

The channels include standard and quite general low-level vision routines, such
as region detection, stereo matching, and motion detection. The vision problem
is best considered in the context of an embodied agent. Some channels thus en-
capsulate knowledge specific to this agent, such as its kinematics, and use this to
update the global workspace. With a wide range of channels, one subset of the
available channels might supply the most informative cues under certain con-
ditions (a uniform background, say) while a different subset of channels might
supply the most informative cues under a different set of conditions (prominent
motion, for example). Our architecture ensures that the most informative chan-
nels make the greatest contribution to the overall representation of the scene,
and manages these transitions seamlessly.

To achieve robust results, we aim to make use of a large number of channels to
cater for a diverse range of situations. Scalability is therefore a primary concern
and is achieved through the loose coupling inherent in our architecture. The
integration of channel outputs is based on probability theory, but we make use
of independence assumptions, where appropriate, to simplify the fusion process.
The loose coupling also facilitates the easy addition of new channels, enabling
us to incorporate suitable off-the-shelf vision algorithms.

The experimental set-up used to test our prototype implementation was an
upper-torso humanoid robot with two 3-degree-of-freedom arms and a stereo
camera mounted on a pan-and-tilt head (Fig. 1). The chosen test task was

Fig. 1. LUDWIG, a humanoid upper-torso robot with two 3-degrees-of-freedom arms
and a stereo camera mounted on a pan-and-tilt head
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visually to detect movable objects placed on the robot’s workbench, and then
to touch them using visual servoing. To achieve this, we use a global workspace
containing a depth map and a scene label map which classifies parts of the scene
as either background, work surface, robot body, or manipulable object. These
labels can in turn be related to affordances.

Our main contributions are:

– The formulation of a probabilistic global workspace architecture for com-
bining evidence from a collection of loosely coupled information channels in
probabilistic scene label and depth maps (Sect. 3);

– a prototype implementation of this architecture containing five channels
based on a diverse range of routines for image and kinesthetic data pro-
cessing (Sect. 4); and

– an evaluation of the accuracy of the scene classification of the implemented
system (Sect. 5).

The architecture is shown to perform well with respect to the chosen task
of object detection. The combination of several processes is found to perform
better overall than any subset of processes.

2 Related Work

While the proposed system’s motivation comes from the global workspace theory
from neuroscience [1], some of the general concepts are also found in earlier sym-
bolic blackboard architectures [2,3]. More recently, but in the same vein, Guhl
and Shanahan [4] present a blackboard architecture sharing many of our aims.
Their architecture has a symbolic foundation where processes create clusters of
features on a hierarchically organised blackboard. The hypotheses thus created
are evaluated based on a system of heuristically determined confidence and sup-
port values. Our work is based on a probabilistic foundation thereby reducing
many of the problems associated with heuristic evaluation and also differs by
classifying different parts of the scene rather than attempting to directly detect
objects.

Hoiem et al. [5] highlight the utility of a rough scene understanding as a prior
for more refined processing, which relates to our use of a scene label map. They
describe a method for incorporating low-level object detectors, rough 3D scene
geometry, and approximate camera position, modelling their relationships in 3D
space. The main aim of the modelling is to provide priors for specific object
detectors.

Our work is related to image labelling, as we attempt to segment the scene into
different parts. Probabilistic methods are popular in this field, such as Markov
Random Fields (MRFs) and Conditional Random Fields (CRFs). These are both
graphical methods but differ with respect to the relationships they model. CRFs
model the global relationships within the image, such as He et al. [6] who use condi-
tional random fields at multiple scales such that global features provide a context
for local ones. We attempt to provide such context, but do not directly build these
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into our probabilistic models. Rather the overall architecture incorporates several
maps, which can provide the required context for feature detectors.

Much existing work combine different cues probabilistically such as stereo with
colour and contrast [7]; structure-from-motion, object recognition and tracking
[8]; or motion, background subtraction, and skin colour cues [9]. These meth-
ods along with image labelling methods usually attempt to carefully model the
interactions between modules, thus creating strongly coupled systems, typically
with only a small number of modules. In contrast we make simplifying assump-
tions to achieve a weakly coupled system, which should prove more scalable,
both in terms of design effort and computational requirements, as we increase
the number of modules in our architecture.

Our work is more closely related to the cue integration method of Hayman and
Eklundh [10], which uses loosely coupled modules with independence assump-
tions, with a strong focus on motion and tracking. We make use of more modules
and handle static, as well as moving scenes. Additionally, our method is part of
an embodied system, rather than dealing with stand-alone image sequences.

Many of these methods from the image processing literature consider indi-
vidual images in isolation, rather than image sequences in an embodied system,
Such an approach ignores much information that is available to a general vision
system such as data from other sensor modalities and time-invariants in the
image data.

3 Global Workspace Architecture

A global workspace provides a shared data structure on which information chan-
nels operate independently. The information channels are modules which are
specialised for a particular task, such as detecting a particular feature in sensor
data. These channels communicate only via this shared data structure; When
executing, they can consider the contents of the global workspace as well as
low-level sensor data (Fig. 2). When a channel detects something noteworthy it
updates the global workspace, the contents of which are broadcast to the other
channels.

The global workspace takes the form of several maps which together repre-
sent the robot’s belief regarding the state of its surroundings. Each map in the
global workspace and its corresponding integration method is a cue integrator.
The architecture as a whole combines multiple such cue integrators, by making
the data from each map available to all channels. While some channels operate
mainly on input data, others operate on the contents of one map and write to
another map. Updates to one map can thus propagate to other maps. The whole
architecture forms a recursive state estimator. We assume that data arrive at
discrete time steps, at which the maps are updated. Channels operate on both
sensor data (from the current time step) and the global workspace contents (from
the previous time step).

For each map we have a number of desiderata: its representation should be
probabilistic; it should have a sound method of integrating information from
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Fig. 2. System overview. The global workspace provides a data structure shared by
multiple channels. The channels (C0–Cn) are specialised modules which take as input
both low-level data and the existing contents of the global workspace. The global
workspace contains several maps, each with an associated integration mechanism,

Q
.

multiple sources; and the communication and computation overheads associated
with data integration should be low. The first two desiderata ensure that we
can represent uncertainty and can deal with conflicting information. The third
desideratum is intended to ensure that the architecture is scalable in terms
of the number of channels. We plan to extend the system to contain a large
number of channels. Furthermore, we wish the architecture to be suitable for
fast execution on modern multi-core processors or on reconfigurable hardware.
The desired low communication and computation overheads can be achieved by
making simplifying independence assumptions in the underlying probabilistic
models. We thus delegate much of the complexity of the system to within each
channel, rather than to the integration mechanisms.

In addition to the performance benefit of this weak coupling, it also provides
a scalable design methodology. New channels can be designed and added to
the system without considering dependencies on other channels. The simplifying
independence assumptions, however, means that the choice of what channels to
add must made with some care.

The robot’s surroundings are represented in a head-centred sensory ego-sphere
[11], which we call the scene. Points in the real world are projected onto a sphere
centred on the pan-and-tilt axes intersection at the base of the robot’s head. A
scene location on this map is a coordinate pair specifying pan and tilt angles.
This type of map provides a fixed coordinate system onto which events and parts
of the scene can be mapped. For each camera position, the image data map onto
a part of the ego-sphere.



140 A. Fidjeland, M. Shanahan, and A. Bouganis

The global workspace of our current prototype uses two sensory ego-sphere
maps: a depth map (Sect. 3.1) and a part-of-scene label map (Sect. 3.2). The
depth map provides a 2.5D representation of the surroundings. The part-of-scene
label map probabilistically segments the surroundings into background, ground,
foreground, and self. We intend to extend the global workspace to also include
a motion map and a probabilistic segmentation into distinct surfaces.

3.1 Probabilistic Depth Map

The probabilistic depth map maintains the robot’s current belief regarding the
depth at each scene location. This map can be updated by several different
types of channels, such as depth from stereo, depth from motion, etc. For con-
venience, the map is expressed in terms of inverse depth (disparity). The belief
at each scene location is represented by a univariate Gaussian in its canonical
parametrisation ωt = 1/σ2

t and ξt = μ/σ2
t . For the LUDWIG platform, the map

is initialised to a plane below the robot extending to the horizon, with a high
variance.

Data from the different channels are integrated at each scene location us-
ing an information filter. Each scene location is treated independently. Clearly,
neighbouring locations are highly dependent, but these dependencies are han-
dled within each contributing channel rather than in the information filter. We
furthermore treat contributions from the different channels as independent.

The map update takes place in two stages: prediction and measurement up-
date. First, the prediction update:

ω̄t = (ω−1
t−1 + R)−1 and ξ̄t = ω̄t ω−1

t−1 ξt−1

R is the process uncertainty, and there is no control vector.
A number of channels C may contribute to the depth map. Each of these

channels c ∈ C provides at each time step t a disparity mean μc,t and variance
σ2

c,t. Under independence assumptions the information filter update simplifies to

ωt = ω̄t +
∑
c∈C

1
σ2

c,t

and ξt = ξt−1 +
∑
c∈C

μc,t

σ2
c,t

Each channel update now only involves adding terms to two accumulators.
This can be done independently of other channels, and in any order.

3.2 Part-of-Scene Label Map

It is useful to segment the scene into different relevant categories. We use the
set of mutually exclusive labels L = { ground, foreground, self, background }.
A scene location is labelled ground if it is part of the robot’s work surface. The
ground provides support for the manipulable objects we are interested in. A
scene location is labelled foreground if it is part of a manipulable object. A
scene location is labelled self if it contains any part of the robot’s own body.
A scene location which does not fall into any of the above categories is labelled
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background. This above classification of the scene serves two purposes. First, as
the labels relate directly to affordances, the scene classification can be used to
direct behaviour. For example, a touching behaviour may direct attention to
parts of the scene which are labelled foreground. Second, the classification can
serve to direct attention and processing power for more refined analysis to the
parts of the scene which are relevant to the current task.

The label map maintains the current belief, p(Xt|z0:t) at each location as
a discrete probability distribution over the labels. Xt is the random variable
at time t and z0:t denotes the input, both video and sensor data, up to time
t. We model the system as a hidden markov model (HMM) where the scene
labels are the hidden states. Similar to the depth map update, each location
is treated independently and dependencies between neighbouring locations are
handled within each channel.

The observed state zt is either image or sensor data. Because of its high
dimensionality we do not directly provide measurement probabilities of the form
p(zt|Xt = l). Instead each channel c provides an observation probability of the
form p(fc(zt)|Xt = l), where fc is a channel-specific feature detector of lower
dimensionality. We make the simplifying assumption that these channel outputs
are independent and thus define the observation probability as follows:

p(zt|Xt = l) =
∏
c∈C

p(fc(zt)|Xt = l)

The channel-specific observation models p(fc(z)|X) are learned from labelled
data. Typically, fc is a discrete function, so that the observation model is a
4 × n matrix where n is the number of discrete values provided by fc. We limit
the certainty that the observation model can express, to avoid overfitting to the
training data. Additionally, we impose constraints on the model based on prior
knowledge where we know a priori that the distribution for specific data values
should take a certain form. For example, we may know that a channel is able
to distinguish one label from all the others, but may not be able to distinguish
between these other labels.

To update the belief we use a discrete Bayes filter (HMM forward pass). The
predicted belief for label k ∈ L is

p(Xt = k|z0:t−1) = p̄k,t =
∑
l∈L

p(Xt = k|Xt−1 = l)pl,t−1

based on state transition probabilities learned from labelled data. Data from
each channel are incorporated to attain the next state estimate

p(Xt = k|z0:t) = pk,t = η p(zt|Xt = k) p̄k,t

The normaliser η ensures that the probabilities sum to 1.
Similar to the depth map update, each channel update only involves multi-

plying terms to an accumulator which can be done independently from other
channels and in any order, thus ensuring low coupling.
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3.3 Behaviour System

The global workspace architecture is used in the upper-torso humanoid robot
LUDWIG as part of an active vision system. The contents of the global workspace
are used to direct attention and drive behaviours. Both the scene label map and
depth map are useful in this respect. The scene map may be used to direct at-
tention to behaviour-relevant parts of the scene, while the depth map specifies
the 3D locations of those parts.

Our current focus is on directing attention towards foreground objects with
the aim of manipulating them. To this end, we derive an interest map from the
scene label map that indicates the presence of foreground pixels. Each location
on the interest map combines two terms: label interest (i+), and boredom (i−).
At each scene location we compute the total interest at time t: it = i+t − i−t . We
find a region of interest (ROI) for the behaviour by finding a fixed-size area in
the interest map in which the sum of it is maximal and above some threshold.

The label interest term is high in the parts of the scene which are highly likely
to contain foreground objects:

i+t =

{
p(foreground|z0:t) if foreground = argmax

x∈L
p(x|z0:t)

0 otherwise

The boredom term ensures that the attention switches from the current ROI
to some other part of the scene after some time.

i−t =

⎧⎨
⎩

i−t−1 + wROI if in ROI
i−t−1 − wROI if i−t−1 > 0
i−t−1 otherwise

where the weight wROI influences the time a behaviour remains fixated at a
location, and the weight wROI influences the time before the behaviour can be
directed back to a previous region of interest.

The above method can be used for other behaviours as well, either by pro-
viding suitable parameters for existing labels, or by introducing new labels such
as a human label used for a gaze-following behaviour. With multiple behaviours,
certain conditions in the global workspace can trigger transitions between be-
haviours in an FSM-style behaviour model. The ROI may have a different mean-
ing depending on the behaviour. An exploring behaviour may direct the gaze
towards the region-of-interest; a touching behaviour may additionally move the
hands there.

4 Five-Channel Prototype

The previous section presents a general architecture for combining the output
of specialised channels in order to infer the structure of a scene. We provide a
prototype implementation with five channels. Some of these channels use general
image processing techniques, such as depth from stereopsis, while others are
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specific to the LUDWIG robot. Furthermore, some channels operate mainly on
input data, updating the global workspace, while some channels use data from
one part of the global workspace to update another.

Kinesthesia. The robot is equipped with rotation sensors on the arm joints. The
kinesthesia channel updates both the depth map and the scene label map to take
into account the current position of the arms. The channel segments the scene
into self, ground over which the arms have recently moved (“moved-over”), and
non-self. The “self” parts of the scene are found by ray-casting onto a sphere-
and-cylinder model of the arms. We keep track of the areas over which the arms
have moved, as this is a strong indicator that this part of the scene is ground
with no objects on it. The channel updates the depth map for pixels labelled
as “self” or “moved-over”. For “self” scene locations the channel uses the depth
found by ray casting as the mean with a small fixed variance. For “moved-over”
scene locations, the mean depth is set to the distance to a horizontal plane at the
base at the robot. The kinesthesia channel can distinguish self from the other
labels but does not distinguish between these other labels. The model learned
under this constraint specify that self is significantly more likely than the other
labels at the scene locations where the arms are currently believed to be located.
For the “moved-over” parts of the scene, ground is more likely than foreground,
and both self and background are highly unlikely.

Stereopsis. The stereopsis channel estimates the scene depth based on short base-
line stereo. We use a dynamic programming stereo algorithm due to Birchfield
and Tomasi [12], operating on pairs of Sobel edge maps.

Reachable. The reachable channel connects the depth map and the scene label
map. The channel takes into account the limited reach of the robot, and segments
the scene into reachable and unreachable parts based on the depth map in the
global workspace. The depth threshold is derived using the dimensions and kine-
matics of the robot. Scene locations within reach can be more readily explained
as foreground, ground, and self, and less readily explained as background.

Uniform Surfaces. Since real-world objects classified as foreground or self are
naturally limited in size, a large uniform surface would normally be ground or
background. To detect such uniform surfaces we use a sparse circular mask around
each pixel, and compute a similarity measure based on the difference in hue and
saturation between the central pixel and each of the surrounding pixels. If the
central pixel is part of a large uniform surface, most surrounding pixels will
be similar in hue and saturation, which leads to a strong response in the mask.
This detector provides a fast method of directly detecting large surfaces, without
doing a full segmentation. We learn an observation model for this channel based
on ground-truth labelled data. In the learned model, a strong response (high
similarity to surroundings) is deemed likely to be caused by a true ground or
background label. A weak response (low similarity to surroundings) does not
provide much discriminatory power between the labels. Such weak responses
are typically found for true foreground and self labels, as well as for coarsely
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textured ground and background surfaces. This channel thus mainly serves to
reject false positives for foreground and self. The method could also be applied
using similarity measures based on texture rather than colour.

Differential Motion. The differential motion channel uses differential motion
analysis to determine what parts of the scene contains moving objects. It per-
forms segmentation based on an accumulated history of image difference, and
produces a binary map of changing and non-changing parts of the scene. Im-
age changes are assumed to be caused by motion, while other causes of image
change is considered noise. The channel considers the previous state of the scene
labelling. For example, if a location at which motion was detected was previously
believed to be background, motion is more readily explained by the presence of
self or foreground objects. If, on the other hand, a location was previously
labelled foreground, motion is more readily explained by foreground (moving
textured object) or background (object moved away, revealing background). The
channel learns the model from labelled data.

The five channels presented above are only small sample of the possible chan-
nels that can be brought to bear on the problem, but nonetheless provide a
useful prototype for evaluating our architecture. As we extend the system other
channels can be added, for example considering optical flow, texture, shadows,
projective geometry, lighting, face detection, and depth from motion.

5 Experimental Results

To evaluate the performance of our architecture using the five channels described
in Sect. 4, we conduct experiments using the LUDWIG robot in different sce-
narios. We evaluate the quality of the labelling as well as evaluate the effect of
using different channel combinations.

5.1 Scenarios

The input to the system is a stereo RGB video stream with data at a resolution
of 640x480 along with a stream of sensor data for the pan/tilt unit and arm
rotation sensors. We run the robot through three different scenarios involving
both camera and arm motion, and with varying levels of clutter (Fig. 3). We
have hand-labelled ground truth scene labels for each sequence. The observation
models used in the evaluation were learned from a different set of ground-truth
labelled data.

The three scenarios involve the same set of objects, but we vary the back-
ground as well as the interaction with the objects to evaluate the performance
of the system under different, but controlled situations. Four objects are present
in the scene. The system has no prior knowledge regarding either of these, but
must identify these objects based on their observable properties.

In the first scenario (uniform), the objects are placed on the uniformly tex-
tured wooden workbench on which the robot is mounted. During the sequence
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(a) uniform (frame 7) (b) textured (frame 9) (c) moving (frame 58)

Fig. 3. Scenarios used in evaluation of system, showing input frame (top) and detected
objects (bottom)

the camera moves twice to observe different parts of the scene. In the second
scenario (textured), the workbench surface is covered by coarsely textured paper
before placing the objects, resulting in a significantly more cluttered scene. The
camera motion is the same as for uniform. In the third scenario (moving), we use
the same basic setup as for uniform, but additionally have the robot touch and
push one of the objects (the spray can). This scene thus adds both self motion
and object motion.

5.2 Experiments

To evaluate how well the system makes use of the different channels, we run the
robot using different channel combinations for each scenario. The combination of
all channels is used as the baseline, with which we compare combinations where
one channel has been removed. The channel combinations where one channel is
removed gives an indication of the contribution of that channel.

We evaluate the performance of the system using ROC curves for the scene
labelling. This plots the true positive rate for classification of foreground pixels
against the false positive rate at different threshold values for p(foreground|z0:t)
at which a location is classified as foreground. The ROC curve is determined
with respect to this label only on a per-frame basis. To get a single measure of
the system performance for each frame, we compute the area under the ROC
curve. For this area-under-curve (AUC) measurement, a value of 1.0 corresponds
to a perfect classifier, whereas a 0.5 corresponds to a random classifier.

5.3 Discussion

The bottom row of Fig. 3 shows the parts of the input images classified as fore-
ground according to the method in Sect. 3.3. There are some mis-classifications
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Fig. 4. Area under ROC curve for different scenarios

and the output is somewhat coarse due to being back-propagated from the scene
coordinate system, which is lower resolution. Overall, though, it is clear that
the main objects in the scene are chosen over the surroundings, also in the
cluttered textured scenario. Fig. 4 shows the AUC values for each of the video
sequences. Within each sequence the performance is fairly constant, even as the
camera moves to different parts of the scene, with different characteristics. Each
of the sequences has pronounced reductions in performance. These correspond
to frames during and shortly after camera motion. The performance is lower in
these parts of the sequence as the recursive state estimation takes a few frames
to stabilise. The performance differs slightly between the sequences. The simpler
uniform scenario has the highest overall performance among the three, followed
by the moving and textured scenarios.

Combining channels increases performance. For most frames, leaving one
channel out either decreases performance, in some cases dramatically, or has
no effect. Although for some frames there is a slight improvement in perfor-
mance when leaving a channel out, this effect is generally small and short. For
no channel does removing it improve the performance overall.

We observe that different channels contribute in different situations. Consider
for example the uniform scenario. In the first third of the sequence the uniform
surface channel makes the greatest contribution; removing it has the greatest
negative impact. In the middle third of the sequence, however, the stereo channels
are more important. In this part of the sequence removing uniform surface has
almost no effect. These two parts contain different views of the scene, the first
mostly containing the workbench, while the second also captures some of the
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background. In the latter case, the stereo data are important to avoid false
classifications. In the final third of this sequence both the uniform surface and the
kinesthesia channel have significant contributions. In this part of the sequence,
the robot’s left arm is in the centre of the frame and the kinesthesia avoids
mis-classifying this.

Consider also the textured scenario. Because of the coarse texture present in
this sequence, detecting uniform surfaces is of little use. Instead, e.g. from frame
50 onwards the reachable and kinesthesia become the most critical channels in
achieving good object detection. A single channel may contribute to short-lived
situations. The presence of the motion channel makes little difference for most
of the sequences. In the moving scenario, however, it is the dominating channel
in classifying the objects in the motion shortly before frame 58.

We thus observe two traits of the system: an increased overall performance
when adding new informative channels, and different channels dominating the
object detection under different circumstances. We therefore expect to further
improve the performance and robustness of the system by adding new channels.

6 Conclusions and Future Work

The probabilistic global workspace architecture presented in this paper provides
an attractive means by which to construct robust vision systems for object de-
tection in challenging scenes. The results from our prototype system show the
promise of the approach, with our robot able to direct attention on objects in the
scene based on generic clues rather than some specific object model. The mod-
ular nature of the architecture enables us to easily add channels as we in future
work extend the system with additional channels, which might consider optical
flow, texture, shadows, projective geometry, lighting, and depth from motion.
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